Learn more about Search Results 写真 - Page 11
- You may be interested
- 「Wall-Eのための経路探索アルゴリズムの...
- 「トランスフォーマーの簡素化:理解でき...
- 未来は今です:MedTechにおけるAIの6つの応用
- 「OpenAIモデルに対するオープンソースの...
- 「リアルタイムデータのためのPythonでのC...
- 「LLMsを使用して、ロボットの新しいタス...
- 「学生としてデータサイエンスの仕事を得...
- 「一般的なコンピュータアルゴリズムに対...
- 「パーソナルロボットによる生活の快適化」
- 「スマートな会話インターフェースのため...
- 「ウェアラブルデバイスは人間の観察より...
- 人間の脳血管のアトラスは、アルツハイマ...
- 「K-Means初期化の課題に対する効果的な戦...
- 学生と機関のためのChatGPTプラグインで学...
- このAI論文は、高品質な3Dセグメンテーシ...
エンターテイメントデータサイエンス:ストリーミングvs劇場
「トゥワード・データ・サイエンスの私の次のエンターテイメント・データ・サイエンス記事では、データ・サイエンスがコンテンツのライフサイクルのさまざまな段階で適用できることを紹介していますグリーンライトから製作まで...」
「2人が同じイニシャルを持っている確率はどのくらいですか?」
先週、共同プロジェクトに参加するためにチームに加わりましたチームは既に数か月前に設立されており、いくつかの科学者がプロジェクトに取り組んでいました簡単のために、彼らは以前に…
「比率の信頼性はどの程度ですか?」
「データサイエンスの分野で私の参考資料の一つはジュリア・シルジュです彼女のTidy Tuesdayビデオでは、常にコードを一緒に作成するタイプのビデオで、あるテクニックを教えたり、他のアナリストを助けたりします...」
シミュレーション最適化:友人の会社のサポートデスクをモデル化し最適化の手助けをする
それは比較的シンプルな依頼から始まりました私の友人は、サポートセンターの運営を手伝っており、いくつかの困難を抱えていました支援デスクのエージェントはいつでも効率的でないようで…
『特徴変換における欠損値の詳細な処理/代入技術』
私たちが知っているように、機械学習アルゴリズムは欠損データに対してあまりうまく動作しません特徴エンジニアリングの一環として、欠損データの特徴を信頼性のある特徴に変換するために欠損データ行を削除することです...
「GPS ガウシアンと出会う:リアルタイムにキャラクターの新しい視点を合成するための新たな人工知能アプローチ」
マルチビューカメラシステムの重要な機能の1つは、ソースの写真を使用して新しい視点から写真のような画像を生成する新規ビュー合成(NVS)です。人間のNVSのサブフィールドは、ホログラフィックコミュニケーション、ステージパフォーマンス、スポーツ放送のための3D / 4D没入型シーンキャプチャなどの領域で、リアルタイムの効率と一貫した3D外観に大きく貢献する可能性があります。従来の方法では、新しいビューを作成するために加重ブレンディングプロセスが使用されてきましたが、これらの方法は通常、非常に密な入力ビューまたは非常に正確なプロキシジオメトリのいずれかに依存していました。スパースビューカメラ設定下でNVSのために高品質な画像をレンダリングすることは依然として大きな課題です。 最近、ニューラルラディアンスフィールド(NeRF)などの暗黙の表現によって、いくつかのNVSタスクで優れたパフォーマンスが示されています。プロセスを高速化するための戦略の進化があったにもかかわらず、暗黙の表現を使用するNVSメソッドは、シーン空間の密なスポットをクエリするのにはまだ時間がかかります。一方、明示的な表現のリアルタイムおよび高速レンダリング能力、特にポイントクラウドは持続的な関心を集めています。ニューラルネットワークと組み合わせると、ポイントベースのグラフィックスは、人間のNVSテストでNeRFよりも現実的で効率的な明示的な表現を提供します。 哈尔滨工业大学と清华大学の新しい研究では、この論文ではパーサブジェクト最適化を使用せずに、前向きにガウスパラメータを回帰するための普遍的な3Dガウススプラットアプローチを目指しています。彼らの目標は、成功した学習ベースの人間再構成アプローチであるPIFuのような大規模な3D人間スキャンモデルを使用して、さまざまな人間のトポロジ、衣類スタイル、姿勢依存変形を作成するためにガウス表現の学習方法を学ぶことです。提案された手法は、これらの獲得した人間のプライオリティを利用して汎用的なガウスモデルによる人間の外観の迅速な描写を可能にします。 研究者たちは、無構造なポイントクラウドの代わりにソースビューの画像平面(位置、色、スケーリング、回転、不透明度)に定義された2Dガウスパラメータマップを提示しています。これらのガウスパラメータマップにより、ピクセルごとのパラメータを使用してキャラクターを描写することができます。また、3D演算子の代わりにコスト効率の良い2D畳み込みネットワークを使用することができます。2つのソースビューの両方に対して2ビューステレオを使用して深度マップを推定することで、2Dパラメータマップを3Dガウスポイントに変換します。これにより、ソースビューの両方からの未投影ガウスポイントによってキャラクターが表現され、スプラットアプローチを使用して新しいビューの画像が生成されます。人間のキャラクターに特有の自己遮蔽は、既存のカスケードコストボリュームアプローチでは深度推定を難しくします。したがって、チームは、このような大規模データ上のガウスパラメータ回帰および反復的なステレオマッチングベースの深度推定モジュールを同時にトレーニングすることを提案しています。ガウスモジュールのレンダリング損失の最小化により、深度推定によって引き起こされる可能性のあるアーティファクトを修正し、3Dガウス位置の精度を向上させます。このような協力的なアプローチのおかげで、トレーニングはより安定します。 実際には、チームは最新のグラフィックスカードを1枚だけ使用して、25 FPS以上のフレームレートで2Kの新しいビューを実現することができました。提案手法の広範な汎用性と高速レンダリング能力により、最適化や微調整なしで見たことのないキャラクターを瞬時にレンダリングすることができます。 彼らの論文で強調されているように、提案されたGPS-Gaussianは高品質の画像を合成しますが、いくつかの要素は手法の効果にまだ影響を与える可能性があります。例として、正確な前景マッティングは重要な前処理ステップです。また、ターゲットエリアが1つのビューでは完全に見えず、他のビューでは見える場合(6つのカメラセットアップなど)、この手法では適切に処理できません。研究者たちは、この困難を時系列データを使用することで解決できると考えています。
「Vchitectを紹介します:テキストからビデオ(T2V)およびイメージからビデオ(I2V)アプリケーションに適したオープンソースの大規模一般istビデオ作成システム」
“`html 人工知能(AI)の人気が爆発的に高まったことにより、深層生成モデルの大幅な進展が生まれました。これらのモデルは、映像生成の分野に適用され、画像の作成と写真の合成を行うために利用されています。有名な例としては、GANやVAEなどの自己回帰モデルがあり、AIコミュニティの間で同様の手法を使用してビデオを作成することに興味が湧いています。 ビデオの生成には、深層生成モデルを利用する上で課題があります。その規模の小ささから、顔や体の生成など、特定の領域に限定されてしまうことがあります。しかし、大規模な拡散モデルや処理能力の向上により、より幅広いコンテキストでビデオを作成するためのオプションが増えました。その進展にも関わらず、映画の視覚的な品質や時系列の連続性などの問題を解決するためには、さらなる努力が必要です、特に長いビデオにおいては。 これらの課題を解決するために、研究チームはVchitectという大規模な汎用ビデオ作成システムを開発しました。このシステムは、テキストからビデオ(T2V)および画像からビデオ(I2V)のアプリケーションを目的としています。Vchitectは、異なる長さの映画を生成し、映画的な視覚的美を実現することで、スムーズなカメラ移動と物語の連続性を促進します。 Vchitectは、数秒から数分までの任意の長さの高精細なビデオを作成することができます。シーン間のスムーズな遷移を保証し、一貫したストーリーテリングをサポートします。このシステムは、ビデオ制作の異なる側面に対応するために複数のモデルを統合しています。以下にそれらを紹介します。 LaVie, テキストからビデオモデル(T2V):Vchitectの基盤となるパラダイムであり、書かれた説明を短い優れた映画に変換します。 SEINE, 画像からビデオ生成モデル(I2V):この機能により、静止画からダイナミックなコンテンツを生成できるため、システムの適応性が向上します。 短いから長い(S2L)モデル:短い映画の間のシームレスな接続と遷移を作成します。これにより、より長いビデオの全体的な連続性と流れが向上し、魅力的な視聴体験が実現します。 主題一貫性モデル:このモデルは、同じ主題のビデオを生成することができます。別々のフッテージ間の一貫性を保つことは重要であり、同じ人物やオブジェクトが複数の映画の断片に出演する場合に特に適しています。 時間補間モデル:生成された映像の動きのスムーズさを向上させ、時系列の特性を高めることで、ビデオコンテンツの全体的な流れを向上させます。 ビデオ超解像モデル:このモデルは、生成された映像の解像度を向上させ、空間的な視覚品質の改善にも対応します。これは、視覚要素の明瞭さと優れた品質を保証するために重要です。 研究チームはまた、Vimeo25Mという包括的で多様なビデオデータセットも作成しました。このコレクションには、ビジュアルの魅力、多様性、品質を重視して、2500万のテキスト-ビデオのペアが含まれています。研究チームは、モデルが十分に訓練され、さまざまなイベントやコンテンツのタイプを扱えるようにするために、広範で多様なデータセットを含める必要があると共有しています。 また、Vchitectシステムの基盤となるT2Vモデルが優れていることを示す包括的な分析も実施されました。ビジュアルの品質、連続性、および与えられた口頭の説明と対応する映画を生成する能力など、さまざまな側面がこの評価に含まれています。 “`
DL Notes 高度な勾配降下法
以前の記事では、勾配降下法について基本的な概念とその種類の最適化における主な課題を要約しましたしかし、スティーブンスティカスティック勾配法のみを取り上げました...
「データ自体よりもデータ生成プロセスを理解することの方が重要」
乳幼児期初期には、我々の脳は既に相関と因果関係を結びつけ、周りで起こるすべての出来事に対して説明を見つけようとしますもし私たちの後ろに車が近づいてくるとすれば…
「独立性の理解とその因果推論や因果検証における重要性」
最近の記事で、著者は依存性の概念がデータセットに対して提案された有向非巡回グラフ(DAG)を検証するためにどのように使用され、不正なエッジを特定するのに使われるかを探求し、解説しました
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.