Learn more about Search Results プラグイン - Page 11

「BlindChat」に会いましょう:フルブラウザおよびプライベートな対話型AIを開発するためのオープンソースの人工知能プロジェクト

BlindChatは、MithrilSecurityによって立ち上げられたオープンソースでプライバシー重視のChatGPTの代替案です。BlindChatは、第三者のアクセスなしで完全にウェブブラウザ内で動作する世界初の対話型AIを作成することを目指すオープンソースのAIイニシアチブです。現在の一般的なAIソリューションでは、AIモデルの使用と引き換えにユーザーデータをAIサービスプロバイダーと共有することが一般的です。これを許可すると、ユーザーデータが盗まれるリスクがあります。データはLLMの強化に貴重なリソースですので、いくつかの手法はユーザーデータを暗黙的に調整してモデルの学習をより良くすることがあります。ユーザーは、このような方法でLLMが個人情報を記憶する危険にさらされます。 BlindChatは、ローカル推論を実行するか、セキュアな環境であるセキュアエンクレーブを使用することにより、ユーザーデータが常にプライベートに保たれ、ユーザーが完全なコントロールを保持することを保証します。 BlindChatには、主に2つの対象者がいます: 消費者:ユーザープライバシーを優先する新しい、より安全なオプションを提供します。現在、ほとんどの消費者はデータをAIサービスに提供していますが、プライバシー設定が明確でないか存在しないことがよくあります。 BlindChatチームは、開発者がより簡単にプライバシーに配慮した対話型AIを提供できるように、プラットフォームの構成と展開の簡素化に幅広い作業を行っています。 MithrilSecurityは、ブラウザが通常サーバーが行う機能を実行できるようにプログラムを変更しました。したがって、AIサービスプロバイダーは信頼モデルに含まれておらず、プライバシーが保護されます。 透明かつ安全なAIは、機能をサーバーからユーザー側のブラウザに移動することで実現されます。これにより、エンドユーザーの個人情報が保護され、データに対する主体性が与えられます。たとえば、トランスフォーマーを使用すると、推論をローカルで実行することができ、JavaScriptを使用することで、チャットはユーザーのブラウザ履歴に保存されます。その結果、AIサービスの管理者はユーザーの情報を見ることができません。このため、このサービスは「BlindChat」と呼ばれています。 リモートエンクレーブモードがアクティブになっている場合、データはサーバーにのみ送信されます。この設定では、サーバーはエンクレーブという検証済みで安全なコンテナ内に展開され、完全な周辺防御を提供し、外部からのアクセスをブロックします。エンクレーブのAIプロバイダーの管理者でさえ、ユーザー情報にアクセスすることはできません。 MithrilSecurityには、ユーザーに利用可能な2つの異なるプライバシーオプションがあります: オンデバイス設定では、モデルがユーザーのブラウザにローカルにダウンロードされ、推論がローカルで処理されます。 利用可能な帯域幅と処理能力の制約のため、このモードはより複雑なモデルには適しています。 ゼロトラストAI APIを使用する場合、情報はモデルが保存されている安全な場所であるエンクレーブに送信され、リモートで推論されます。これらの設定は、強力な分離と検証により包括的なセキュリティを提供します。AIサービスプロバイダーはユーザーデータに対して暗号化されていないアクセス権を持ちません。 このプロジェクトは、3つの主要な部分で構成されています: ユーザーインターフェース:チャットとのやり取り時にユーザーが見る画面です。チャットウィンドウがあり、将来的にはドキュメントの読み込みや音声制御などのためのウィジェットやプラグインが追加されます。 開発者は、ユーザー要求を処理するために使用するプライベートLLMを完全に制御します。現在のソリューションはローカルモデルまたはリモートエンクレーブであり、透明性と機密性のある推論を提供します。 チャットログなどのデータの保存に使用されるストレージのタイプは、開発者によって設定可能です。 MithrilSecurityは現在、LaMini-Flan-T5の推論のみを許可しています。370Mがリリースされた後、パフォーマンス向上のためにMicrosoft phi-1.5を統合する予定です。クライアント側でLlamaIndex-TSの統合も開発中であり、RAGを使用してブラウザ内で機密なドキュメントをクエリすることができます。

「機械学習プロジェクトのための最高のGitHubの代替品」

「GitHubに似た機能と機能を提供するいくつかのプラットフォームやサイトを見てみましょうこれらは簡単にGitHubに対抗できる堅牢な機能を備えています」

MLflowを使用した機械学習実験のトラッキング

イントロダクション 機械学習(ML)の領域は急速に拡大し、さまざまなセクターで応用されています。MLflowを使用して機械学習の実験を追跡し、それらを構築するために必要なトライアルを管理することは、それらが複雑になるにつれてますます困難になります。これにより、データサイエンティストにとって多くの問題が生じる可能性があります。例えば: 実験の損失または重複:実施された多くの実験を追跡することは困難であり、実験の損失や重複のリスクを高めます。 結果の再現性:実験の結果を再現することは困難な場合があり、モデルのトラブルシューティングや改善が困難になります。 透明性の欠如:モデルの予測を信頼するのが難しくなる場合があります。モデルの作成方法がわかりにくいためです。 写真提供:CHUTTERSNAP(Unsplash) 上記の課題を考慮すると、MLの実験を追跡し、再現性を向上させるためのメトリックをログに記録し、協力を促進するツールを持つことが重要です。このブログでは、コード例を含め、オープンソースのML実験追跡とモデル管理ツールであるMLflowについて探求し学びます。 学習目標 本記事では、MLflowを使用した機械学習の実験追跡とモデルレジストリの理解を目指します。 さらに、再利用可能で再現性のある方法でMLプロジェクトを提供する方法を学びます。 最後に、LLMとは何か、なぜアプリケーション開発のためにLLMを追跡する必要があるのかを学びます。 MLflowとは何ですか? MLflowロゴ(出典:公式サイト) MLflowは、機械学習プロジェクトを簡単に扱うための機械学習実験追跡およびモデル管理ソフトウェアです。MLワークフローを簡素化するためのさまざまなツールと機能を提供します。ユーザーは結果を比較し、複製し、パラメータやメトリックをログに記録し、MLflowの実験を追跡することができます。また、モデルのパッケージ化と展開も簡単に行えます。 MLflowを使用すると、トレーニング実行中にパラメータとメトリックをログに記録することができます。 # mlflowライブラリをインポートする import mlflow # mlflowのトラッキングを開始する mlflow.start_run() mlflow.log_param("learning_rate", 0.01)…

「PyTorchモデルのパフォーマンス分析と最適化—パート6」

「これは、PyTorch ProfilerとTensorBoardを使用してPyTorchモデルを分析および最適化するトピックに関するシリーズ投稿の第6部ですこの投稿では、より複雑な問題の1つに取り組みます...」

「全体的な実験の影響を推定する」

データ駆動型の組織は、通常、同時に数百から数千の実験を実施しますが、これらのすべての実験の総合的な影響は何でしょうか?素朴なアプローチは、差分の合計を求めることです...

疾病の原因を特定するための遺伝子変異のカタログ

私たちは、研究者がそれらがどのような影響を持つかについてさらに学ぶことができる「ミスセンス」変異のカタログを公開しましたミスセンス変異は、ヒトのタンパク質の機能に影響を与える遺伝子変異です一部の場合、システィックフィブローシス、鎌状赤血球貧血症、またはがんなどの疾患を引き起こすことがありますAlphaMissenseカタログは、ミスセンス変異を分類する私たちの新しいAIモデルであるAlphaMissenseを使用して開発されました

ChatGPTによるカスタムMatplotlibウェルログプロットの高度なデータ分析

「ChatGPTのコードインタプリタは、現在『高度なデータ分析』という名前に変更され、一定期間利用可能ですこのプラグインは、OpenAIが開発したもので、ユーザーがデータをアップロードできるようにするためのものです2023年7月6日にリリースされました」

「ExcelでのPython:これがデータサイエンスを永遠に変える」

「ExcelでPythonコードを実行してデータを分析し、機械学習モデルを構築し、可視化を作成することができます」

「GPT-4を超えて 新機能は何ですか?」

「GPT-4を超えて:生成AIの4つの主要なトレンド:LLMからマルチモーダル、ベクトルデータベースへの接続、エージェントからOSへ、そしてファインチューニングからプラグインへそして、MetaのLlama 2とCode Llama」

PyCharm vs. Spyder 正しいPython IDEの選択

PyCharmとSpyderはPython開発のための2つの最も人気のあるIDEですでは、PyCharmとSpyderの直接比較を見てみましょう

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us