Learn more about Search Results エージェント - Page 11
- You may be interested
- 「Amazon SageMakerトレーニングワークロ...
- プロデジーHFをご紹介します:Hugging Fac...
- 紛争のトレンドとパターンの探索:マニプ...
- VoAGI ニュース、8月16日:テキストをパワ...
- SparkとPlotly Dashを使用したインタラク...
- 出生前診断の革命:PAICSディープラーニン...
- 現代のNLP:詳細な概要パート2:GPT
- LLMのパフォーマンス比較ーRoberta、Llama...
- 「セグミンドの生成AIによるエンパワーリ...
- 「Googleが人生のアドバイスを提供するAI...
- UCバークレーとMeta AIの研究者らは、トラ...
- 「不確実な世界での自律的なイノベーション」
- 『RAG パイプラインの落とし穴: 「テーブ...
- 「Numexprの探索:Pandasの背後にある強力...
- 『プロンプトブリーダーの内部:Google De...
ChatGPTの哲学コース:このAI研究は、対話エージェントのLLMの振る舞いを探究します
2023年はLLMの年です。ChatGPT、GPT-4、LLaMAなど、新しいLLMモデルが続々と注目を集めています。これらのモデルは自然言語処理の分野を革新し、さまざまなドメインで増え続ける利用に遭遇しています。 LLMには、対話を行うなど、人間のような対話者との魅力的な幻想を生み出す幅広い行動を示す驚くべき能力があります。ただし、LLMベースの対話エージェントは、いくつかの点で人間とは大きく異なることを認識することが重要です。 私たちの言語スキルは、世界との具体的なやり取りを通じて発達します。私たちは個人として、社会化や言語使用者のコミュニティでの浸透を通じて認知能力や言語能力を獲得します。このプロセスは赤ちゃんの場合はより早く、成長するにつれて学習プロセスは遅くなりますが、基礎は同じです。 一方、LLMは、与えられた文脈に基づいて次の単語またはトークンを予測することを主な目的とした、膨大な量の人間が生成したテキストで訓練された非具体的なニューラルネットワークです。彼らのトレーニングは、物理的な世界の直接的な経験ではなく、言語データから統計的なパターンを学ぶことに焦点を当てています。 これらの違いにもかかわらず、私たちはLLMを人間らしく模倣する傾向があります。これをチャットボット、アシスタントなどで行います。ただし、このアプローチには難しいジレンマがあります。LLMの行動をどのように説明し理解するか? LLMベースの対話エージェントを説明するために、「知っている」「理解している」「考えている」などの用語を人間と同様に使用することは自然です。ただし、あまりにも文字通りに受け取りすぎると、このような言葉は人工知能システムと人間の類似性を誇張し、その深い違いを隠すことになります。 では、どのようにしてこのジレンマに取り組むことができるでしょうか? AIモデルに対して「理解する」や「知っている」という用語をどのように説明すればよいでしょうか? それでは、Role Play論文に飛び込んでみましょう。 この論文では、効果的にLLMベースの対話エージェントについて考え、話すための代替的な概念的枠組みや比喩を採用することを提案しています。著者は2つの主要な比喩を提唱しています。1つ目の比喩は、対話エージェントを特定のキャラクターを演じるものとして描写するものです。プロンプトが与えられると、エージェントは割り当てられた役割やペルソナに合わせて会話を続けるようにします。その役割に関連付けられた期待に応えることを目指します。 2つ目の比喩は、対話エージェントをさまざまなソースからのさまざまなキャラクターのコレクションとして見るものです。これらのエージェントは、本、台本、インタビュー、記事など、さまざまな材料で訓練されており、異なるタイプのキャラクターやストーリーラインに関する多くの知識を持っています。会話が進むにつれて、エージェントは訓練データに基づいて役割やペルソナを調整し、キャラクターに応じて適応して対応します。 自己回帰サンプリングの例。出典:https://arxiv.org/pdf/2305.16367.pdf 最初の比喩は、対話エージェントを特定のキャラクターとして演じるものとして描写します。プロンプトが与えられると、エージェントは割り当てられた役割やペルソナに合わせて会話を続けるようにします。その役割に関連付けられた期待に応えることを目指します。 2つ目の比喩は、対話エージェントをさまざまなソースからのさまざまなキャラクターのコレクションとして見るものです。これらのエージェントは、本、台本、インタビュー、記事など、さまざまな材料で訓練されており、異なるタイプのキャラクターやストーリーラインに関する多くの知識を持っています。会話が進むにつれて、エージェントは訓練データに基づいて役割やペルソナを調整し、キャラクターに応じて適応して対応します。 対話エージェントの交代の例。出典:https://arxiv.org/pdf/2305.16367.pdf このフレームワークを採用することで、研究者やユーザーは、人間にこれらの概念を誤って帰属させることなく、欺瞞や自己認識などの対話エージェントの重要な側面を探求することができます。代わりに、焦点は、役割演技シナリオでの対話エージェントの行動や、彼らが模倣できる様々なキャラクターを理解することに移ります。 結論として、LLMに基づく対話エージェントは人間らしい会話をシミュレートする能力を持っていますが、実際の人間の言語使用者とは大きく異なります。役割プレイヤーやシミュレーションの組み合わせなどの代替的な隠喩を使用することにより、LLMベースの対話システムの複雑なダイナミクスをより理解し、その創造的な可能性を認識しながら、人間との根本的な相違を認識できます。
SalesforceのLive Call Analyticsによる統合でエージェントの生産性を向上させる
コンタクトセンターエージェントとして、生産的な顧客との会話に集中することが好きですか?それとも、さまざまなシステムに存在する顧客情報や知識記事を調べることによって気を散らされますか?私たちは皆、そういう経験をしたことがありますマルチタスクをしながら生産的な会話をすることは難しいです1つのネガティブな経験は、[...]に傷をつける可能性があります
AgentGPT ブラウザ内の自律型AIエージェント
あなたのAIエージェントに名前と目標を与え、割り当てられた目的を達成するのを見てください
自律型AIエージェントについて知る必要性
自律型AIエージェントとその重要性を理解するための初心者向けガイド
「自律走行車とトロリー問題:「良い」決定を探し求めて」
North Carolina State Universityの熱心な研究チームが、日常の交通シナリオで生じる倫理的ジレンマについて正確かつ関連性の高いデータを積極的に収集していますこの貴重な情報は、低リスクな状況の複雑さをより深く理解し、私たちの道徳的な意思決定能力を改善するのに役立ちます
「2024年のデータエンジニアリング&AI Xイノベーションサミットを発表します」
「私たちが4月にボストンで開催されるODSC Eastと共に開催される2つのイベントを発表できることは、もっと興奮しませんそれは、データエンジニアリングサミットとAi Xイノベーションサミットですこれら2つの共同開催イベントは、これらの分野を形作るトピックとトレンドにさらに深く立ち入る機会を提供しています学んでください...」
パスライトのCTO兼共同創設者、トレイ・ドイグのインタビューシリーズ
トレイ・ドイグは、パスライトの共同創設者兼CTOですトレイは、IBM、クリエイティブ・コモンズ、Yelpでエンジニアとして働いた経験を持つ、テック業界で10年以上の経験を持っていますTreyは、Yelp Reservationsのリードエンジニアであり、SeatMeの機能をYelp.comに統合する責任を負っていましたTreyはまた、SeatMeウェブアプリケーションの開発を率いました...
「無料ハーバード講座:PythonでのAI入門」
「Pythonを使った人工知能の学びに最適なコースを探していますか?ハーバード大学の無料コースをチェックしてみてください!」
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
Google AIがMedLMを導入:医療業界の利用事例に特化したファミリー型基盤モデル
Googleの研究者たちは、現在米国で利用可能な医療業界のために調整されたモデルの基礎であるMedLMを紹介しました。これは、Googleの医療と医学における以前の研究であるMed-PaLM 2という医用に調整された大規模言語モデルに基づいて構築されています。MedLMには、別々のエンドポイントを持つ2つのモデルがあり、顧客にさまざまなユースケースに対する柔軟性を提供します。MedLMは、医療の質問応答や要約に優れた性能を発揮します。 最初のモデルは大きなバリアントで、複雑なタスクを処理するために設計されています。一方、二番目のVoAGIサイズのモデルは、微調整やさまざまなアプリケーションへのスケーラビリティに対して柔軟性を提供します。特定の医療と生命科学の要件に基づいて設計されたこれらのモデルは、基本的な機能から洗練されたワークフローまで、医療におけるAIの採用を強化することが期待されています。 Googleは、HCA Healthcare、BenchSci、Accenture、およびDeloitteと協力し、既存のプロジェクトでのパフォーマンスと効率を向上させるためにMedLMを活用しています。HCA Healthcareとの協力により、MedLMはAugmedixのプラットフォームに統合されています。MedLMの技術を活用したこのアプリは、自然言語処理を使用してクリニシャンと患者の会話をドラフト医療ノートに変換し、医療規制に準拠します。この自動化は、パフォーマンスを向上させるだけでなく、時間の節約、バーンアウトの軽減、そして患者ケアの向上にも貢献します。 BenchSciは、前臨床の研究開発の領域で、ASCENDプラットフォーム内でMedLMを活用しています。目標は、前臨床研究のスピードと品質を向上させることにより、薬の発見を加速することです。ASCENDは、AIパワーのエビデンスエンジンであり、MedLMと協力してバイオマーカーの識別と分類を強化し、科学的な発見プロセスを効率化しています。 Accentureとの協力により、Googleは生成型AIを活用して患者のアクセス、体験、および結果を向上させることを目指しています。Google CloudのClaims Acceleration SuiteとMedLMを統合することで、医療機関は新しい洞察を発見し、最終的にはより良い患者結果につながることができます。MedLMの機能をパイロット導入することにより、DeloitteとGoogle Cloudは、プロバイダディレクトリや福利厚生文書からの情報の簡素化を図り、さまざまな基準に基づいて適切なプロバイダを特定する際にコンタクトセンターエージェントをサポートしています。 これらのプロジェクトすべてが示しているように、MedLMの利用は医療および医学産業におけるAIの成長を支援することができます。Google Researchは、今後数ヶ月間にさらなる機能を提供するために、Geminiベースのモデルを組み込んでMedLMスイートを拡大する予定です。業界のリーダー企業との協力努力は、医療における生成型AIの変革的な可能性を示しています。技術が進化するにつれて、Googleは医療現場の開業医、研究者、および医療組織と緊密に連携し、健康・生命科学における画期的な研究を推進するためにAIの安全かつ責任ある使用を確保することに取り組んでいます。 この投稿は、Google AI Introduces MedLM: A Family of Foundation Models Fine-Tuned…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.