Learn more about Search Results 18 - Page 118
- You may be interested
- 「CNNによる特徴抽出の探求」
- 最新のデータを使ってファンデーションモ...
- 北京大学とマイクロソフトの研究者がCOLE...
- 一般化線形モデルの解説
- 「DINO — コンピュータビジョンのための基...
- 「AIドクター」は、入院後の再入院やその...
- DeepMindの最新の研究(ICML 2022)
- 「製薬治療パイプライン全体にわたりAIを...
- なぜBankrateはAI生成記事を諦めたのか
- 「ODSC West 2023に参加すべき10の言語モ...
- 「Androidのための10最高のデータ復旧ツー...
- 人工知能に投資するのですか? 考慮すべき...
- 広大な化学空間で適切な遷移金属を採掘する
- 合成時系列データ生成としてのLLM
- グラデーションとは何か、そしてなぜそれ...
Matplotlibを使用してインフォグラフィックを作成する
データを扱い、データサイエンティストとして仕事をするためには、魅力的で興味深いデータの可視化を作成することが重要ですこれにより、読者に情報を簡潔な形式で提供することができ、理解を助けることができます
AI vs. 予測分析:包括的な分析
人工知能(AI)と予測分析は、すべてのビジネスの運営方法を再構築しています。この記事では、AIと予測分析のエンジニアリングへの応用に焦点を当てます。まず、人工知能(AI)の一般的な概念について説明します。次に、エンジニアリングに応用される予測エンジニアリング分析の詳細に入ります。 機械学習やディープラーニングなど、人工知能のアプローチの詳細を説明します。主な違いが強調されます。記事の最後までに、革新的なディープラーニング技術が過去のデータを活用して長時間かかる高価な実験テストや3Dシミュレーション(CAE)の結果を正確に予測する方法を理解することができます。 異なる分析戦略 多くの種類の分析戦略があります:記述的分析、診断的分析、予測的分析。主な違いは何ですか? 記述的分析と診断的分析は、異なる焦点を持っています。記述的分析は、歴史的なデータを要約し解釈して何が起こったのかについての洞察を提供します。診断的分析は、特定のイベントがなぜ発生したのかを分析し、因果関係を特定することで一歩進んでいます。 エンジニアリングにおける予測分析は、新製品の性能を実験室でテストする前に予測するなど、製品設計や製造におけるイベントの将来の結果を予測することに焦点を当てています。 予測分析は、エンジニアにとって興味のある4番目の分析のタイプにつながります:最適な結果を得るための行動の推奨を含む指示的分析です。 AIと人間-競争か協力か? AIはエンジニアを置き換えるのでしょうか? いいえ、むしろ、より多くの権限を与え、意思決定に影響を与える力をエンジニアに与え、製品設計や予測保守のデジタルスレッドをよりスマートに使用します。 AIは強力なツールとして機能し、エンジニアの能力を高め、意思決定プロセスを向上させるための実効性のある洞察を提供します。 人工知能と予測分析 人工知能は、人間の知性をシミュレートし、通常人間の認識を必要とするタスクを実行できるインテリジェントな機械の開発を包括する分野です。予測分析は、データ、統計的アルゴリズム、および機械学習技術を使用して、過去のデータとリアルタイムデータに基づいて将来の結果を予測することに特化しています。この分析の分野は、過去のパターンとトレンドを活用して、将来のイベント、行動、トレンドを一定の精度で予測するためにさまざまな機械学習アルゴリズムを利用します。 AIと予測分析の概要 人工知能(AI)は、最も広い意味で、機械が学習し、理解し、自律的に意思決定を行うための設計されたテクニックとアルゴリズムの幅広い範囲を指します。 人工知能システムは、膨大な量のデータを処理し分析し、パターンを特定し、意思決定と自動化を推進する洞察を生成することができます。 一方、予測分析は、過去の出来事(データマイニングで取得し順序づけられたもの)を使用して未来の結果を正確に予測するための技術に焦点を当てています。他のビジネスインテリジェンス技術とは異なり、予測分析は将来を見据えており、過去のイベントを利用して将来のイベント、行動、トレンドを予測するために使用されます。 AI以前の予測分析:伝統的な3Dシミュレーション(CAE) AIの登場以前、90年代から、エンジニアは統計的または物理ベースのモデルを使用して、自分たちの物理的な知識を包括した予測分析ツールを提供することができました。 伝統的な予測モデリングワークフローの例として、エンジニアは、車のジオメトリ(CAD = コンピュータ支援設計)に基づいて車の空気力学的性能を予測することができました。空気力学はナビエ・ストークスなどの物理方程式によって制御されていますが、エンジニアリング予測分析の複雑なアルゴリズムは、合理的な時間内に回答を提供するために、並列計算を備えたハードウェアへの投資が必要でした(数日または数時間)。 AIを活用した予測分析:3Dシミュレーション(NCS) 2018年以来、Neural…
大規模な言語モデルにおけるコンテキストに基づく学習アプローチ
言語モデリング(LM)は、単語のシーケンスの生成的な尤度をモデル化することを目指し、将来の(または欠損している)トークンの確率を予測します言語モデルは自然言語処理の世界を革新しました...
データサイエンスは良いキャリアですか?
イントロダクション データサイエンスはその持続的な重要性と影響力により、キャリアパスを考える個人たちの間で非常に興味深く魅力的な話題となっています。データの生成、分析、利用が指数関数的に増加する時代において、データサイエンスは良いキャリアなのかという疑問が生じます。データサイエンスの多様な側面、職業成長への潜在能力、さまざまな産業での関連性を探求することで、データサイエンスが魅力的で良いキャリア選択肢であるという価値と見通しを理解することができます。 この記事では、データサイエンティストが良い仕事なのか、データサイエンスが将来の良いキャリアなのかについての疑問に答えます。これらの疑問への回答は、データサイエンスが持つ見通しと機会について包括的な理解を提供します。さあ、始めましょう! データサイエンスとは何ですか? データサイエンスは、さまざまな科学的手法、アルゴリズム、手順を利用して膨大なデータから知識を抽出することに焦点を当てています。それは生データの中にある曖昧なパターンを見つけるのに役立ちます。データサイエンスはビジネスの問題を研究プロジェクトに変え、それを実際の解決策に変えることができます。多くの人々は、データサイエンスのキャリアを求める理由として、多くの役割と魅力的な給与があるためです。 また読む: 2023年にデータサイエンティストになるためのステップバイステップガイド なぜデータサイエンスを選ぶのですか? データサイエンスの分野は広範で多様です。この分野には、テクノロジーの分野でキャリアを求めている専門家に多くのものを提供しています。それは成長の機会が多い魅力的なキャリアオプションです。データサイエンスをキャリアに考えるべき理由のいくつかは次のとおりです: 需要がある データサイエンスは非常に求められています。見込みのある従業員の機会は数多くあります。LinkedInでは、この職種の成長率が最も高く、2026年までに1150万の仕事が追加されると予想されています。そのため、データサイエンスの分野は需要があります。 多くの職種があります データサイエンティストになるためには必要なスキルセットを持っている人はごく一部です。そのため、データサイエンスは他のIT産業よりも発展が遅れています。その結果、データサイエンスの領域は非常に多様で、多くの選択肢があります。データサイエンティストは需要が高いですが、さらに需要があります。 報酬の良いキャリア データサイエンスの分野は最高の給与をもたらします。Glassdoorによると、データサイエンティストの平均年収は11万6100ドルです。そのため、データサイエンスの仕事は非常に報酬が良いです。 データサイエンスは柔軟な分野です データサイエンスには幅広い応用があります。銀行、医療、コンサルティング、電子商取引などで頻繁に使用されます。データサイエンスの分野は非常に多様です。そのため、さまざまな領域で働くことができます。 データサイエンスのトレンドと産業事実 データサイエンスは著しい成長を遂げ、多くの産業に不可欠な存在となっています。データサイエンスのトレンドと産業事実には、キャリア選択肢としてのデータサイエンスの重要性と潜在能力を示すものがいくつかあります。データサイエンスの分野は魅力的な報酬パッケージを提供しています。Glassdoorによると、アメリカのデータサイエンティストの平均給与は年間約11万3000ドルです。この高い収益性は、データサイエンスのスキルと専門知識の求人市場での価値を示しています。 さらに、データサイエンスはさまざまな産業に応用されています。医療や金融からマーケティングや電子商取引まで、さまざまなセクターの組織はデータサイエンティストに頼って意味のある洞察を抽出し、戦略的な意思決定を推進しています。例えば、医療業界では、データサイエンスは患者データの分析や個別化された治療計画の開発に使用されます。同様に、マーケティングでは、データサイエンスが消費者のトレンドを特定し、特定のターゲットオーディエンスを対象にし、広告キャンペーンを最適化するのに役立ちます。 これらのトレンドと産業事実は、データサイエンスが発展し求められているキャリアパスであり、さまざまなセクターでの成長と影響の大きな機会があることを示しています。 データサイエンスのキャリアの未来 仕事の機会に関して、データサイエンスには数多くのものがあります。経済学者によれば、2026年までに全国で1100万以上の求人があると予測されています。実際、2019年以来、データサイエンスの採用は46%増加しています。それにもかかわらず、2020年8月末までにインドでは約9万3000件のデータサイエンスの求人がありました。そのため、データサイエンスの潜在能力は否定できません。 データサイエンティストの役割に加えて、この分野には多くの仕事の選択肢があります。以下はその一部です:…
AIが置き換えることができない仕事
はじめに サイバーノートであろうとそうでなかろうと、おそらく「AIが置き換えることのできない仕事」の議論を聞いたことがあるでしょう。2025年までに、世界中で約8500万の仕事が自動化によって廃れるリスクに直面しています。人工知能は毎回新たな発明を行っており、それが大規模に展開されれば、ほとんどの人間の仕事をこなすことができる可能性があります。過去にはChatGPTというものが登場し、作家やコンテンツマーケターを驚かせました。スポーツ業界では、食事計画の自動化や選手の怪我予防などにAIが活用されています。カスタマーサービスでは、既にチャットボットを導入する環境が整っています。この状況から考えると、本当にAIに置き換えられない仕事が存在するのかと思われます。 しかし、上記で議論した内容を考慮すると、作家や栄養士、カスタマーサービスエージェントが別の職業に転職する必要があるのでしょうか?この記事の最後まで読み進めると、自分自身で判断することができます。さて、AIに置き換えることができない仕事について話しましょう。 しかし、その前に、私たちはあなたに素晴らしい機会を提供したいと思います。データサイエンスやAIに熱中しているすべての方々に、2023年の高い期待を寄せたDataHack Summitに参加していただきたいと思います。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターでイベントが開催されます。このイベントでは、実践的な学び、貴重な業界の洞察、そして非競争力のあるネットワーキングの機会が満載です。ぜひDataHack Summit 2023をチェックしてください! AIの仕事市場への影響 出典:Built In 仕事市場におけるAIによる変化は、多くのトレンドや話題の中心となっています。この技術は特定のタスクを自動化し、産業を変革する可能性を持っていますが、雇用に対して複雑な全体的な影響を与え、AIはいくつかの仕事を置き換えることはできません。しかし、そこに進む前に、世界の注目を浴びている出来事をすべてご紹介しましょう。 自動化が仕事を置き換えています AIに関する懸念の一つは、自動化が以前は人間が行っていた特定のタスクを置き換える可能性です。研究によると、AIによって2030年までに約4億から8億人が仕事を失い、別の職業に転職する可能性があります。ロボット工学や機械学習などのAI技術は、さまざまなセクターでルーチンや繰り返しのタスクを自動化することができ、一部の仕事の需要が減少することをもたらす可能性があります。製造業、カスタマーサービス、交通、データ入力などの産業は、自動化による仕事の置き換えの影響を最も受けやすい産業の一部です。 新しい役割が生まれています 出典:The Enterprise Project AIは一部の仕事をなくすかもしれませんが、新しい仕事の機会を生み出し、既存の役割を補完する可能性もあります。AI技術が進化するにつれて、AIシステムを開発、実装、維持するための新しい役割が出現します。さらに、データ分析、機械学習、AI倫理、アルゴリズム設計などの分野に精通した専門家への需要が高まるでしょう。組織はAIシステムを監督し、倫理的な考慮事項を確保し、AIの洞察に基づいた戦略的な意思決定を行う人材を必要とするでしょう。 スキルの開発と同様にスキルの向上も重要です 人工知能の広範な採用は、仕事市場で求められるスキルの変化をもたらす可能性があります。一部の低スキルで繰り返しのタスクは自動化される可能性があり、AI技術と補完するスキルに重点が置かれることになるでしょう。これには、批判的思考、創造性、問題解決能力、適応力、感情知性、複雑な意思決定などのスキルが含まれます。スキル向上の取り組みは、変化する仕事市場に適応するために必要な能力を獲得するために重要となるでしょう。 社会経済的な考慮事項が注目されています AIが求人市場に与える影響は、より広範な社会経済的な意味を持っています。AIの恩恵が公平に分配されない場合、所得格差に寄与する可能性があります。教育や資源へのアクセスが制限されている特定のコミュニティや個人は、変化する求人市場に適応する際に困難を抱えるかもしれません。スキルのギャップに対処し、終身学習を支援し、包括的なAI技術へのアクセスを促進する政策や取り組みは、潜在的な不平等を緩和するのに役立ちます。 AIが置き換えられない仕事の概要 出典:Analytics…
チャートを使ったストーリーテリング
これは、メッセージを伝える目的で最適なデータ可視化技術がどれかを示すことを目的とした、4つの記事のうちの2つ目の部分です
科学ソフトウェアの開発
この記事では、このシリーズの最初の記事で示されたように、科学ソフトウェアの開発においてTDDの原則に従って、Sobelフィルタとして知られるエッジ検出フィルタを開発します
製造品の品質におけるコンピュータビジョンの欠陥検出を、Amazon SageMaker Canvasを使用したノーコード機械学習で民主化する
品質の低下によるコストは、製造業者にとっての最重要課題です品質の欠陥は、廃棄物や再作業のコストを増加させ、スループットを減少させ、顧客と企業の評判に影響を与える可能性があります生産ラインでの品質検査は、品質基準を維持するために重要です多くの場合、品質と欠陥の検出のために人間の視覚検査が使用されますが、これは...
クエリを劇的に改善できる2つの高度なSQLテクニック
SQLは、すべてのデータプロフェッショナルにとっての基本ですデータアナリスト、データサイエンティスト、データエンジニアであるかどうかに関係なく、クリーンで効率的なコードを書く方法をしっかりと理解している必要があります
エンタープライズAIとは何ですか?
エンタープライズAIの紹介 時間は重要であり、自動化が答えです。退屈で単調なタスク、人間によるミス、競争の混乱、そして最終的には曖昧な意思決定の苦闘の中で、エンタープライズAIは企業が機械と協力してより効率的に働くことを可能にしています。さもなければ、Netflixでお気に入りの番組を見つけたり、Amazonで必要なアクセサリーを見つけて購入する方法はどうやって見つけるのでしょうか?自動車のWaymoからマーケティングでの迅速な分析まで、人工知能はすでに私たちに十分な理由を提供しています。しかし、それが組織をどのように助けているのでしょうか?また、組織はそれをどのように使用しているのでしょうか?答えはエンタープライズAIです。 こんにちは! Analytics Vidhya Blogの熱心な読者として、私たちはあなたに素晴らしい機会を提供したいと思います。データサイエンスとAIの愛好家の皆さん、ぜひ私たちと一緒に非常に期待されているDataHack Summit 2023に参加してください。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターで行われます。このイベントは、実践的な学習、貴重な業界の洞察、そして無敵のネットワーキングの機会で満たされた、爆発的なものになるでしょう。これらのトピックに興味があり、これらのコンセプトが現実になることをもっと学びたい場合は、こちらのDataHack Summit 2023の情報をチェックしてください。 エンタープライズAIの定義 エンタープライズAIは、大規模な組織内で人工知能技術と技法を応用して、さまざまな機能を改善することを指します。これらの機能には、データの収集と分析、自動化、顧客サービス、リスク管理などが含まれます。エンタープライズAIは、AIアルゴリズム、機械学習(ML)、自然言語処理(NLP)、コンピュータビジョンなどのツールを使用して、複雑なビジネスの問題を解決し、プロセスを自動化し、大量のデータから洞察を得ることを目指しています。 エンタープライズAIは、サプライチェーン管理、ファイナンス、マーケティング、顧客サービス、人事、サイバーセキュリティなど、さまざまな領域に実装することができます。これにより、組織はデータに基づいた意思決定を行い、効率を向上させ、ワークフローを最適化し、顧客体験を向上させ、市場で競争力を持つことができます。 出典:Publicis Sapient エンタープライズAIの主な特徴 エンタープライズAIは、データ分析から自動化まで、組織のさまざまな側面に貢献します。それは異なる技術や技法、そして方法の産物であり、それは各業界やビジネスによって異なるかもしれません。以下にその仕組みを示します。 エンタープライズアプリケーション向けのAI技術の組み合わせ エンタープライズAI企業は、機械学習、自然言語処理、エッジコンピューティング、ディープラーニング、コンピュータビジョンなどの技術の組み合わせを活用することができます。これらの技術は、予測分析、画像認識などのタスクを通じて、ビジネスを支援するための強力な機能を提供します。Netflixのパーソナライズされた推奨機能は、ディープラーニングなどの技術を使用した、その一例です。 組織のニーズに合わせてカスタマイズされ設計された エンタープライズAIは、さまざまな技術の組み合わせです。組織がシステム内でどのようにアプローチするか、どの技法を採用するかは、ビジネスの要件によるものです。なぜなら、サプライチェーン管理に適した方法が、eコマースの場合に必要なわけではないからです。 たとえば、ヘルスケアのエンタープライズAI企業は、画像解析、患者モニタリングなどの技法を採用して、医療業務の効率を向上させています。エネルギー業界では、予測保守、再生可能エネルギーの統合などの技術と技法を使用して、エネルギーの発電と消費を最適化しています。その活用方法の違いにより、組織は人工知能のさまざまな分野を航海しています。 エンタープライズAIの利点と応用 以下はエンタープライズAIの主な利点です:…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.