Learn more about Search Results L - Page 10

このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています

最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成することができます。テキストから画像の生成に成功することは稀であり、3Dトレーニングデータが必要なため、テキストから3Dへの移行は難しいです。拡散モデルと微分可能な3D表現の良い性質により、最近のスコア蒸留最適化(SDS)ベースの手法では、事前学習済みの大規模テキストから画像を生成するモデルから3D知識を抽出し、大量の3Dデータで完全に学習する代わりに、印象的な結果を達成しています。DreamFusionは、3Dアセットの作成に新たなアプローチを導入した模範的な研究です。 過去1年間で、2Dから3Dへの蒸留パラダイムに基づいて方法論が急速に進化してきました。複数の最適化段階を適用することで、生成品質を改善するための多くの研究が行われており、3D表現の前に拡散を最適化したり、スコア蒸留アルゴリズムをさらに精密化したり、パイプライン全体の詳細を向上させたりしています。これらの手法は細かいテクスチャを生成できますが、2Dの拡散先行は依存していないため、生成された3Dコンテンツの視点の一貫性を確保することは困難です。そのため、複数のビュー情報を事前学習済みの拡散モデルに強制的に組み込むための試みがいくつか行われています。 ベースモデルは制御ネットワークと統合され、制御されたテキストからマルチビュー画像の生成が可能になります。同様に、研究チームは制御ネットワークのみを訓練し、MVDreamの重みはすべて凍結されています。研究チームは実験的に、相対姿勢条件が条件画像に関してテキストからマルチビューの生成を制御するためにより良い結果をもたらすことを発見しました。これに対して、MVDreamが絶対座標系で記述されたカメラの姿勢で訓練されている場合でも、事前学習済みのMVDreamネットワークの記述とは異なります。さらに、視点の一貫性は、シングルイメージの作成に対応する条件付けメカニズムを持つ2D ControlNetの制御ネットワークをベースモデルとの相互作用に直接採用することで容易に達成できます。 これらの問題に対処するために、浙江大学、西湖大学、同济大学の研究チームは、制御ネットワークを基にした独自の条件付けテクニックを作成し、制御されたテキストからマルチビューの生成を提供するために十分に成功したControlNetアーキテクチャを提案しました。幅広い2DデータセットLAIONと3DデータセットObjaverseの一部を共同で使用してMVControlを訓練しました。この研究では、エッジマップを条件として使用することを調査しましたが、彼らのネットワークは深度マップ、スケッチ画像など、さまざまな種類の入力状況を活用する能力に制約はありません。訓練が終了すると、研究チームはMVControlを使用して制御されたテキストから3Dアセットの生成に3D先行を提供することができます。具体的には、MVControlネットワークと事前学習済みのStable-Diffusionモデルに基づくハイブリッド拡散先行が使用されます。細かいステップでは、ベースモデルから十分なジオメトリを得た段階でのテクスチャの最適化のみが行われます。包括的なテストにより、提案された手法が入力条件画像と書かれた説明を使用して、高精度で細かい制御が可能なマルチビュー画像と3Dコンテンツを生成できることが示されています。 まとめると、以下が彼らの主な貢献です。 ・ネットワークが訓練された後、SDS最適化を介した制御されたテキストから3Dコンテンツ合成にハイブリッド拡散の一部として使用できます。 ・独自のネットワーク設計を提案し、細かい制御が可能なテキストからマルチビュー画像の生成を実現します。 • 彼らのアプローチは、入力条件画像とテキストのプロンプトによって細かく制御されることができる高精度なマルチビュー画像と3Dアセットを生成することができます。これは、広範な実験結果によって示されています。 • SDS最適化による3Dアセットの生成に加えて、彼らのMVControlネットワークは、3Dビジョンとグラフィックのコミュニティでさまざまなアプリケーションに役立つ可能性があります。

NexusRaven-V2をご紹介します:13B LLMは、ゼロショット機能呼び出しでGPT-4を凌駕し、ナチュラルランゲージの指示を実行可能なコードに変換する能力を持っています

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-1024×623.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-150×150.png”/><p>LLMsは、コード関連のデータセットで微調整することができ、関数呼び出しを含むコードスニペットを生成することができます。これらのモデルは、コンテキストやプロンプトによって提供された入力に基づいて、関数呼び出しを含むコードを提案または生成することができます。言語モデルは、コードに関連するクエリや指示の自然言語理解に使用することができます。開発者は質問や説明を入力し、モデルはそれらを解釈して関連する関数呼び出しやコードセグメントを提供することができます。</p><p>LLMsは、提供されたコンテキストや部分的なコードに基づいて、関数呼び出しを提案したり関連する関数を提案したりすることによって、コード補完を支援することができます。これにより、開発者はより迅速かつ正確にコードを記述することができます。LLMsは、特定のタスクや問題の説明に基づいて、適切なAPIや手順をガイドすることで、開発者がコード内で呼び出すべき適切な関数を見つけるのを支援することができます。LLMsを開発環境に統合することで、開発者に対して関数呼び出し、パラメータのタイプ、または潜在的なエラーに対してリアルタイムのサポートを提供することができます。</p><p>Nexusflowの研究者は、オープンソースのLLMモデル、<strong><a href=”https://www.voagi.com/nexusravenv2-outperforms-gpt4-in-nexusflows-latest-battle.html”>NexusRaven-V2</a></strong>を提案しています。これは自然言語の指示を実行可能なコードに変換してツールを使用することができます。OpenAIアシスタントAPIは、コパイロットとエージェントがソフトウェアツールを使用するための鍵として機能します。NexusRaven-V2は、コパイロットとエージェントのオープンソースモデルを進化させることを目指しています。</p><p>NexusRaven-V2は、ネストや複合関数を使用する人間が生成したユースケースで、関数呼び出しの成功率でGPT-4を最大7%上回っています。NexusRavenはMetaのCodeLlama-13 Bインストラクションにチューニングされた指示です。Nexusflowのパイプラインを使用して、プロプライエタリなLLMを使用せずにオープンコードのコーポラから情報源を提供しています。コミュニティ開発者と企業の両方に対して商業許容です。</p><p>当社の人間によるベンチマークで、NexusRaven-V2は、関数呼び出しの成功率において、最新のGPT-4モデルよりも平均で4%高い成功率を示すことが観察されました。なお、ネストや複合関数呼び出しを必要とする4つの厳しいタスクでは、NexusRaven-V2の方がGPT-4よりも堅牢性が高いと言えます。また、開発者の関数の説明におけるバリエーションを処理する際にも、NexusRaven-V2はGPT-4よりも優れた性能を発揮します。</p><p>チームは、ユーザーがメインストリームのプロプライエタリな関数呼び出しAPIをシームレスにNexusRaven-V2で置き換えることができるオープンソースのユーティリティアーティファクトをリリースしました。また、オンラインデモやコラボノートブックを提供してオンボーディングと統合デモを行っています。彼らは評価ベンチマーク<a href=”https://www.voagi.com/call-all-functions.html”>Nexus-Function-Calling</a>をオープンソース化し、Huggingfaceの<a href=”https://www.voagi.com/create-and-analyze-advanced-machine-learning-models-using-the-sagemaker-canvas-model-leaderboard.html”>リーダーボード</a>を確立しています。このリーダーボードには、さまざまな関数呼び出しのユースケースと難易度をカバーした、実生活で人間が選定した関数呼び出しの例が多数収録されています。</p><p>将来的には、関数呼び出しのLLMは教育現場において、学習者がリアルタイムのサポートを受けながら関数の呼び出し方を正しく学び、プログラミングの概念の理解を促進することができるでしょう。</p>

UCLAとCMUの研究者が、優れた中程度範囲の天気予報のためのスキルと信頼性のあるスケーラブルなトランスフォーマーニューラルネットワーク「ストーマー」を紹介しました

現在、科学と社会が直面している主な問題の一つは天気予報です。正確な天気予報は、自然災害や極端な天候事象に対処し、回復するために人々が計画するのに重要な役割を果たしており、気候変動への懸念が高まる中で環境をよりよく理解するために研究者を支援しています。数値天気予報(NWP)モデルは、大気科学者の業務の中核です。これらのモデルは、熱力学と流体力学を説明する微分方程式のシステムを使用し、時間を経て結合されることで将来の予測を作成します。NWPモデルは、放射や雲物理学などの重要な小スケールの物理現象のパラメータ化の誤りなど、いくつかの欠点がありますが、広く使用されています。 大規模な微分方程式の統合の困難さから、数値的なアプローチは特に空間および時間の解像度を高くする場合には計算コストが非常に高くなります。さらに、これらのモデルは気候科学者の知識に依存して方程式、パラメータ化、アルゴリズムを改善するため、NWPの予測精度は追加データによっては改善されません。NWPモデルの問題に対処するため、ますます多くの人々がデータ駆動型、深層学習ベースの天気予測手法に関心を示しています。歴史的データ(ERA5再解析データセットなど)を使用して、深層ニューラルネットワークは将来の天気予測を訓練するために使用されます。これがこの手法の主たる前提です。従来のNWPモデルが数時間かかるのに対し、訓練後は数秒で予測することができます。 この分野の初期の取り組みでは、気象データと自然の画像は似たような空間構造を持つため、ResNetやUNetなどの従来のビジョンアーキテクチャを天気予測に使用しようとしました。しかし、それらのパフォーマンスは数値モデルに劣っていました。しかし、改善されたモデル設計、トレーニングレシピ、データとパワーの増加により、最近では注目すべき進展がありました。最初に実用IFCを上回ったモデルは、0.25°データ(721×1440グリッド)でトレーニングされた3D地球特有のトランスフォーマーモデルであるPangu-Weatherでした。すぐに、Keislerのグラフニューラルネットワーク設計がGraphCastによって0.25°データにスケールアップされ、Pangu-Weatherを上回る結果を示しました。 予測精度は優れているものの、現在の手法では複雑で高度にカスタマイズされたニューラルネットワークのトポロジーがしばしば使用され、抜け穴実験がほとんど行われないため、その効果の正確な要素を特定するのは困難です。たとえば、GraphCastにおける多重メッシュメッセージパッシングが効率にどの程度貢献しているのか、3D地球特有のトランスフォーマーが通常のトランスフォーマーと比べてどのような利点を持っているのかは分かりません。この分野では、これらの現行手法をより良く理解し、できれば簡素化するために統合フレームワークが必要です。また、気候や天候の予測を超える気象基礎モデルを作成することも容易になります。この研究では、適切なトレーニングの公式と組み合わせることで、簡単な設計が先端技術を上回る性能を発揮することを示しています。 UCLA、CMU、Argonne National Laboratory、およびPenn State Universityの研究者は、Stormerと呼ばれる、従来のトランスフォーマーのバックボーンにほとんどの変更を加える必要のないシンプルなトランスフォーマーモデルを提案しています。研究チームは、従来のビジョントランスフォーマー(ViT)アーキテクチャをベースにして、モデルのパフォーマンスに影響を与える3つの要素を詳細に調査しました:モデルは次の3つの要素から構成されます:(1)大気変数間の相互作用をモデル化し、入力データをトークンのシーケンスに変換する天気固有の埋め込み層、(2)モデルをランダムな間隔で天気の動態を予測するようにトレーニングするランダムなダイナミクス予測目標、(3)ロス関数において異なる圧力レベルの変数を重み付けして各圧力レベルの密度を近似する圧力加重ロス。提案されたランダムなダイナミクス予測目標は、モデルがトレーニングされた間隔のさまざまな組み合わせを使用することによって、推論中に特定のリードタイムに対して多くの予測を生成するため、1つのモデルが複数の予測を可能にします。 たとえば、6時間の予測を12回配布するか、12時間の予測を6回配布することで、3日間の予測を得ることができます。これらの予測を組み合わせることにより、特に長期のリードタイムにおいて、大きな性能向上が得られます。研究チームは、データ駆動型の天気予測のための人気のあるベンチマークであるWeatherBench 2を使用して、Stormerという提案手法を評価しました。テスト結果は、Stormerが7日後に先端の予測システムを上回り、1日から7日間の重要な大気変数の予測精度で競争力のある結果を達成していることを示しています。特に、Stormerはほぼ5倍低解像度データおよび数桁少ないGPU時間で訓練されることにより、ベースラインよりも性能が向上しています。さらに、スケーリングの研究により、モデルの容量とデータサイズを増やすとStormerの性能が継続的に向上する可能性があることが証明されました。

Google DeepMindの研究者は、言語モデル(LM)のコード駆動型推論を改善するためのシンプルで驚くほど効果的な拡張機能である「Chain of Code(CoC)」を提案しました

Google DeepMind、スタンフォード大学、およびカリフォルニア大学バークレー校の研究者たちは、言語モデルのコード駆動型の推論能力を向上させる問題に対処するために、Code of Chain(CoC)を開発しました。CoCは、LM(“LMulator”としての言語モデルを示す)でシミュレーションするために、undefinedな動作を明示的にキャッチし、シンタックス上のセマンティックなサブタスクを柔軟な擬似コードとしてフォーマットすることを促すことで、問題に対処します。CoCは、大規模なモデルや小規模なモデルでスケーリングが可能であり、コードで考えることで、LMが正しく答えることができる推論の範囲を広げることができます。 Chain of Thought、最小から最大まで、およびScratchPadのようなワークは、タスクを中間ステップに分解するか、中間結果のトレースを保持することにより、プロンプトを活用して推論能力を向上させています。GithubでトレーニングされたLMは、コードの記述と実行を促すようにプロンプトされ、数値または記号的な推論を含む複雑な問題を解決するのに役立ちます。 CoCは、与えられた問題を解決するために、コード構造内の推論のサブステップを生成します。このコードは、痛みを通して推論するためのフレームワークを提供し、明示的なコード、擬似コード、または自然言語の形式で表される場合があります。CoCは、コードによる表現の利点とLMの優れたセマンティックおよび常識的な知識を組み合わせることで、新たな領域でコードの使用を可能にします。コードで表現が難しいルールを簡単に表現できます(たとえば、果物はどのような食べ物ですか?)。 CoCの主要な貢献は、推論コードの生成だけでなく、その実行方法です。コードが書かれた後、コードはコードインタプリタ(この研究ではPythonが考慮されていますが、アプローチ自体は任意のインタプリタに適用可能です)で実行されようとします。コードが正常に実行される場合、プログラムの状態が更新され、実行が続行されます。コードが実行不可能であるか例外を発生させる場合、言語モデルは代わりに実行のシミュレーションに使用されます。言語モデルの出力がプログラムの状態を更新し、実行が続行されます。 CoCアプローチの全体的なパフォーマンスは、他の方法を上回り、タスク数と全体的な量の両方で人間の基準を超えています。CoCは、いくつかの研究において最先端のパフォーマンスを実現しています。Chain of Thoughtプロンプティングと同様に、モデルのサイズが増えるほど性能が向上します。クロスタスクプロンプティングは、すべての方法においてパフォーマンスが低下しますが、CoCはスケール時にはChain of Thoughtと直接プロンプティングを上回るパフォーマンスを示し、人間の平均パフォーマンスに近づきます。 CoCは、言語モデルを用いた推論をコードの記述とコードの実行により行うアプローチです。コードが実行不可能な場合、インタプリタまたはコードの実行をシミュレーションする言語モデルを使用することができます。CoCは、規制の表現の表現力豊かな構造とその強力なツールの両方を活用できます。さらに、実行不可能なコードのシミュレーションにより、CoCはコードの範囲外の問題(例えば、意味的な推論問題)に適用することができます。

Google Researchがジェネレーティブな無限語彙トランスフォーマー(GIVT)を発表 – AIにおける先駆的な実数値ベクトルシークエンス

トランスフォーマーは最初に導入され、自然言語処理の主要なアーキテクチャとして急速に台頭しました。最近では、コンピュータビジョンでも非常に人気があります。Dosovitskiyらは、画像をパッチのシーケンスに分割し、それらのパッチを線形に埋め込み、その結果得られる特徴のシーケンスをトランスフォーマーエンコーダに供給することで、CNNベースのアーキテクチャに勝る効果的な画像分類器を作成する方法を示しました。セグメンテーション、検出、および分類などの多くの区別的なビジョンタスクにおいて、このアプローチは現在の標準です。ただし、生成トランスフォーマーデコーダはある事前定義された有限のボキャブラリーから離散的なトークンを消費して予測するため、画像を(非量子化された)特徴ベクトルのシーケンスにマッピングすることは、トランスフォーマーベースの画像生成には適切ではありません。 このような構造は自然言語に自然に適合し、デコーダーモデル単体では、効果的なトレーニングがインストラクターフォースと強力な連続生成モデリングを介して可能です。最近の取り組みでは、ベクトル量子化変分オートエンコーダ(VQ-VAE)を使用して画像を離散トークンのシーケンスにマッピングし、その後、トランスフォーマーデコーダを使用して潜在的な離散トークンの分布をモデル化するための手法を採用しています。このアプローチは、画像を利用した多走的生成モデルも容易にします。しかし、2段階のメソッドは画像とマルチモーダルコンテンツの作成には適していますが、いくつかの問題があります。 VQ-VAE内のボキャブラリーサイズによって、潜在的なモデリングや画像の細部調整の調整が困難になるため、潜在的なコードの情報量が減少します。また、トークンを使用して密度予測や低レベルの区別的なタスクにトークンを使用するアプリケーションの品質にも影響を与えます。ボキャブラリーサイズの拡大はこの問題の解決に役立ちますが、それによってボキャブラリーの使用が不十分になる場合があります。したがって、高品質なVQ-VAEセットアップでは、エントロピー損失やコードブックの分割などの洗練された方法に頼る必要があります。さらに、巨大なボキャブラリーは記憶容量を多く消費する埋め込み行列をもたらし、異なるモダリティのボキャブラリーが混在するマルチモーダルシナリオでは、問題が発生する可能性があります。研究チームは、これらの問題を回避するために、デコーダーモデルを変更して、離散的なトークンと、したがって、固定された有限のボキャブラリーを必要としない連続した実数値のベクトルシーケンスで動作する生成トランスフォーマーデコーダを提案しています。 特に、Google DeepMindとGoogle Researchの研究チームは、実数値のベクトルシーケンスを用いて機能する生成型無限ボキャブラリートランスフォーマー(GIVT)を提案しています。実数値のベクトルは無限ボキャブラリーと見なすことができるため、研究チームはこれをGIVTと呼んでいます。図1に示されているように、研究チームはトランスフォーマーデコーダの設計をわずかに変更しました(合計2つの変更)。1)入力では、研究チームは離散的なトークンの代わりに連続した実数値のベクトルシーケンスを線形に埋め込む。2)出力では、研究チームは有限のボキャブラリー上のカテゴリカル分布のパラメータを予測するのではなく、連続した実数値のベクトル上の連続した分布のパラメータを予測します。研究チームは、教師強制と因果関係注意マスクを使用してこのモデルをトレーニングしました。また、研究チームはMaskGITに類似した高速進行マスクバイダイレクショナルモデリングも調査しました。 図1は、連続した無限ボキャブラリーのバリエーション(右側のGIVT)を典型的な離散トークン生成トランスフォーマー(左側)と比較するための同じデコーダーモデルを使用しています。 GIVTは、入力時に斜めに並んだ連続した実数値ベクトルのシーケンスで離散トークンを置き換えます。有限のボキャブラリー上のカテゴリカル分布を予測する代わりに、GIVTは出力時に連続した実数値ベクトル上の連続した分布のパラメータを予測します。 高解像度の画像を平坦化して生成されるRGBピクセルの系列は、理論的には任意の特徴ベクトルの系列にGIVTを適用することができるものの、直接的にモデル化するのは難しい例です。それは長くて複雑な分布を持っていることもあります。したがって、研究チームはまず、ガウス事前VAEを使用して低次元の潜在空間をトレーニングし、次にGIVTでモデル化します。これは、VQ-VAEと類似した2段階のテクニックに似ています。研究チームはまた、シーケンスモデリングの文献からいくつかの推論戦略(温度サンプリングや分類器フリーガイディングなど)を転用しました。 注目すべきは、実数値トークンだけを使って、これによってVQベースの技術と同等か優れたモデルが生成されることです。以下に彼らの主な貢献を簡潔に述べます: 1. UViMを使用して、研究チームはGIVTが密な予測タスク(セマンティックセグメンテーション、深度推定、ピクチャーシンセシスなど)において、通常の離散トークン変換デコーダーよりも同等または優れたパフォーマンスを達成することを示しています。 2. 研究チームは、連続ケースにおける従来のサンプリング方法の効果(温度サンプリング、ビームサーチ、分類器フリーガイディング)の派生と有効性を導き出し、証明しました。 3. KL項の重み付けを使用して、研究チームはVAE潜在空間の正規化レベルと現れるGIVTの特性との関連性を検討しました。研究チームは、VQ-VAE文献の洗練されたトレーニング方法(潜在表現への補助損失、コードブックの再初期化、専用の最適化アルゴリズムなど)はVAEおよびGIVTのトレーニングでは使用されていないことを強調しており、単純に通常の深層学習ツールボックスのアプローチに依存していると述べています。

「AWSでMLOpsアーキテクチャを設計する方法」

ガートナーの調査によると、機械学習(ML)プロジェクトのうち、概念実証(POC)から本番まで進展するのはわずか53%ですしばしば戦略的目標と実際の成果の間にズレが生じています

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

メタAIは、リアルタイムに高品質の再照明可能なガウシアンコーデックアバターを構築するための人工知能手法「Relightable Gaussian Codec Avatars」を紹介しますこれにより、新しい表情を生成するためにアニメーションさせることができるハイフィデリティのヘッドアバターが作成されます

“`html 画期的な進展を遂げたMeta AIの研究者たちは、ダイナミックな3Dヘッドアバターの高精細なリライティングを実現するという長年の課題に取り組みました。従来の方法では、特にリアルタイムの応用において効率性が重要となる場合に、表情の複雑な細部を捉えることができるようになるまでに時間がかかることがよくあります。Meta AIの研究チームは、この課題に対処すべく、「リライト可能ガウシアンコーデックアバター」という方法を発表し、アバターのリアリズムの領域を再定義する用意のある手法を作り出しました。 研究チームが取り組んだ中核的な問題は、ダイナミックな顔のシーケンスにおいて、髪の毛や毛穴などのサブミリメートルの詳細をより明確に捉える必要があるということです。目、肌、髪などの人間の頭部の異質な材料を効率的にモデル化しながら、すべて周波数の反射に対応するというのは困難な課題です。既存の手法の制約は、リアリズムとリアルタイムのパフォーマンスをシームレスに組み合わせる革新的な解決策が必要とされています。 リライト可能なアバターに関する既存のアプローチは、リアルタイムのパフォーマンスと忠実度のトレードオフに悩まされてきました。リアルタイムのアプリケーションにおいて、動的な顔の詳細を捉えることができるメソッドが必要とされてきたのです。Meta AIの研究チームは、この課題に目をつけ、「リライト可能ガウシアンコーデックアバター」を革新的な解決策として導入しました。 Meta AIの手法は、3Dガウシアンに基づくジオメトリモデルを導入し、サブミリメートルの精度まで拡張する精密さを提供しています。これは、ダイナミックな顔のシーケンスを捉えるための大幅な進歩であり、髪の毛や毛穴の微妙なニュアンスを含め、アバターが生命的な詳細を示すことを保証します。この革新的な手法の重要な要素であるリライト可能な外観モデルは、学習可能な輝度伝達に基づいています。 https://arxiv.org/abs/2312.03704 これらのアバターの優れた点は、アバターの構築における包括的なアプローチにあります。3Dガウシアンによってパラメータ化されたジオメトリモデルは、アバターのバックボーンを形成し、ガウシアンスプラッティング技術を使用した効率的なレンダリングを可能にします。学習可能な輝度伝達によって駆動される外観モデルは、拡散球面調和関数と反射球面ガウシアンを組み合わせています。この組み合わせにより、アバターは点光源と連続的な照明によるリアルタイムのリライティングを実現できます。 これらの技術的側面を超えて、この手法は表情、視線、ビュー、照明に対する切り離し可能な制御を紹介しています。アバターは、潜在的な表情コード、視線情報、および目標視野方向を利用してダイナミックにアニメーション化することができます。この制御のレベルは、アバターアニメーションにおける重要な進展であり、繊細でインタラクティブなユーザーエクスペリエンスを提供します。 これらのアバターは、単なる理論的な進展ではありません。その手法によって、ヘッドマウントカメラからのライブビデオによるアニメーションが実証されています。この能力により、リアルタイムのビデオ入力がアバターをシームレスに動かすことで、ダイナミックでインタラクティブなコンテンツを作り出すことができます。 総括すると、Meta AIの「リライト可能ガウシアンコーデックアバター」は、複雑な課題に対処するためのイノベーションの力を示すものです。3Dガウシアンに基づくジオメトリモデルと革新的な学習可能な輝度伝達の外観モデルを組み合わせることで、研究チームは既存の手法の制約を超え、アバターのリアリズムに新たな基準を打ち立てました。 “`

‘LLMがデータアナリストを置き換えることはできるのか? LLMを活用したアナリストの構築’

私たちの中の誰もが、昨年の少なくとも1度は、ChatGPTがあなたの役割を置き換えることができるか(いや、むしろいつか)と考えたことがあると思います私も例外ではありません私たちは、最近の...

学習する勇気:L1およびL2正則化の解説(パート4)

「『勇気をもって機械学習を学ぶ:L1&L2正規化を解き明かす』の4番目の記事へようこそ前回、私たちのメンターと学習者のペアは、L1とL2正規化の特性を探索しました…」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us