Learn more about Search Results 2022年 - Page 10

「AIの雇用展望:給与のトレンドと将来の予測」

「サイエンスフィクションが科学の事実となり、機械がますます『人間のよう』になる時代、無視することは不可能な一つのことがあります:AI(人工知能)が雇用の景色を劇的に変える可能性があるということですAI技術の出現は、雇用市場に変革の時代をもたらし、前例のない機会と課題をもたらします... AIの雇用見通し:給与の傾向と将来の予測 続きを読む」

Note The translation result may vary depending on the context and specific requirements.

心配しないで、私はこのタイトルを選んだわけではなく、データサイエンスが「真の科学ではない」と嘆くためではありません(それが何を意味するのか、というのは別として)むしろ、データであることの意味について、いくつかの異なる視点を提供することを望んでいます...

「時系列分析による回帰モデルの堅牢性向上—Part 2」

第1部では、SARIMA(季節性自己回帰和分移動平均)を使用して、タイムシリーズモデルを成功裏に構築することに成功しましたさらに、構築したモデルを評価しました

「AIではなく、データプライバシー法の欠如が存在の脅威です」

今年の夏には、新しい「Black Mirror」のエピソードが公開され、再び不安な問いを投げかけましたもし私たちが技術的な世界の限界を一歩進みすぎたらどうなるのか?生成AIへのアクセスが広まる中で…

世界のトップ10の生成AI企業

イントロダクション 人工知能(AI)は、ビジネスの働き方を変革する力を持つ強力なテクノロジーです。AIの素晴らしい側面の一つは、分析したデータに基づいて新しいコンテンツ(写真や文章など)を生成するジェネラティブ人工知能(GAI)です。このテクノロジーは非常に役立ち、アート、医療、楽しみなど、さまざまなセクターで変革をもたらす力を持っています。世界中で変革的な進歩を牽引するトップ10のジェネラティブAI企業を発見しましょう。 トップ10のジェネラティブAI企業 プロジェクトのためにジェネラティブAIを作成するための優れたジェネラティブAI企業を探しているのですか?正しい場所に来ました。 以下は、ジェネラティブAIの分野で本当に優れたトップ10の企業のリストです。この記事を読んで、ビジネスのアイデアに合うトップのジェネラティブAI企業を選びましょう。 1. RisingMax Inc. RisingMax Inc. は、ジェネラティブAI研究のパイオニア的なリーダーであり、驚異的な実績の記録を作り出しています。 主なハイライト: 彼らのプラットフォームは、世界中で高い評価を受けており、多くの企業がジェネラティブAIソリューションの開発の基盤として活用しています。 ビッグデータ、機械学習、人工知能、ビジネスインテリジェンスなどの最先端の技術を活用して、RisingMaxはAI開発とAIチャットボットのソリューションを提供しています。 2. Suffescom Suffescom は、ジェネラティブAIソリューションの確保に本当に優れたジェネラティブAI企業の一つです。 主なハイライト: 彼らはクライアントにAI技術のアドバイス、ジェネラティブAIの作成、特別なAIソリューションの作成、学習できるAIの作成などをサポートしています。 彼らは過去6年間この分野で活動しており、多くのアプリと洒落たAI製品を作り出してきました。 彼らは健康、教育、銀行、保険、楽しいものなど、さまざまな業界と取り組んでいます。 彼らはClaude AI、GPT-4、Vertex…

最新のデータを使ってファンデーションモデルを最新の状態に保つ方法は? AppleとCMUの研究者が、VLMの継続的なトレーニングのための最初のウェブスケールの時系列連続性(TiC)ベンチマークを導入しましたこれには12.7Bのタイムスタンプ付きのイメージとテキストのペアが含まれています

CLIP、Flamingo、およびStable Diffusionなどの大規模なマルチモーダル基盤モデルの貢献により、画像生成とゼロショット汎化の以前に考えられなかった改善が実現し、マルチモーダル学習におけるパラダイムの変革が起こっています。これらのベースラインモデルは通常、大規模なウェブスケールの静的データセットを用いてトレーニングされます。OpenAIのCLIPモデルなどの従来のモデルが、2020年までのインターネットスケールのデータでトレーニングされた場合に、将来のデータでどのように機能するかは不明です。 まず、AppleとCarnegie Mellon Universityの研究者たちは、OpenAIのCLIPモデルが、2022年までの最新のキュレーションされたウェブデータセットを使用して開発されたOpenCLIPリポジトリのモデルと比較して、ロバスト性の点でどのように優れているかを調査しています。CLIPモデルを測るための標準が存在しないため、2014年から2022年までの動的な分類および検索のタスクをカバーするデータセットを作成しました。OpenCLIPモデルはパフォーマンスを維持している一方、OpenAIモデルは2021年から2022年のデータと2014年から2016年のデータとの間で検索パフォーマンスに大きな差があることがわかりました。OpenAIのCLIPモデルはわずかによりロバストであるものの、これはImageNetの分布シフトにおける正確性などの典型的なテストに完全に反映されていません。 彼らの研究は、静的ベンチマーク(ImageNetなど)を使用することには限界があり、モデルはデータの分布が変化するに伴って適応・進化する必要があることを明らかにしました。データの変化に対応するための単純で頻繁な手法の1つは、新しい画像テキストデータを得た場合に再びトレーニングを開始し、新しいCLIPモデルをトレーニングすることです。この方法の理論的な根拠は、既存のモデルから新しい入力にモデルの振る舞いを適応させることはより困難であるというものです。ただし、新たな基盤モデルを始めからトレーニングするのに必要な時間とエネルギーを何度も投資することは現実的ではありません。 最近のCLIPモデルの持続的学習技術に焦点を当てた取り組みは、一つの後続タスクまたは少数のタスクで効率を向上させることを目的としています。最近の研究の一部はこれらの課題に取り組み始めていますが、現在のベンチマークは範囲が狭すぎるか、画像テキストデータが関連していないため、真に有用ではありません。 CLIPモデルの時系列トレーニングへの第一歩として、研究者たちは時間の経過によるデータ分布の自然な変化を観察しました。既存のCommonPoolデータセットに「クロールタイム」データを含めることにより、彼らはCLIPモデルの時系列連続トレーニングのための新たなベンチマークであるTIC-DataCompを確立しました。研究者たちはまた、RedditやFlickrなどから収集したインターネットの大規模データセットを再利用して、新たな目的に使用しました。特に、YFCCとRedcapsが提供する時系列情報を使用して、それぞれTIC-YFCCとTICRedCapsを編集しました。新しいデータセットが利用可能になるたびに、この研究は時間の制約内で機能する持続学習技術を構築することを目指しています。これらの戦略は、新しいデータが受け取られるたびにトレーニングパラメータをリセットし、累積計算予算を新しいモデルに費やすOracleとは逆の方向を示しています。 研究者たちは、TIC-CLIPフレームワークでトレーニングされたモデルのゼロショット評価を行いました。評価には、ImageNetやImageNetの分布シフト、Flickrなどの28の確立された分類および検索タスクが使用されました。最後に、彼らは自身のベンチマークを使用して、リプレイバッファ、学習率スケジュール、ウォームスタート、パッチング、蒸留など、さまざまな持続学習アプローチを設計・テストしました。 チームは、最新のチェックポイントでトレーニングを開始し、過去のすべてのデータをリプレイすることにより、累積技術がOracleと同等のパフォーマンスを2.7倍の計算効率で実現することを示す重要な教訓を得ました。彼らはまた、順次トレーニングのための学習率スケジュールや、静的および動的パフォーマンスのためのバッファサイズの間における興味深いトレードオフを示しました。彼らの結果は、11Mサンプルから3Bまでのデータセットにわたる傾向を強調し、テクニックによって一貫性を持たせました。既存のデータセットに追加で収集されたコードとタイミングデータは、近々公開され、広いコミュニティが提案されたベンチマークを使用できるようにする予定です。研究チームは、この未開拓のトピックに光を当てることで、基盤モデルの持続トレーニングへの道を切り開くことを望んでいます。

「Pythonを使用して美しい折れ線グラフを作るための5つのステップ」

美しい折れ線グラフをMatplotlibで作成し、データで魅力的で視覚的なストーリーを伝えることができます究極のグラフを作成するためのステップバイステップチュートリアル

人工知能(AI)と法的身分

この記事では、特に民法に基づいて人工知能(AI)に法的主体の地位を与える問題に焦点を当てていますここで法的身分は、法的能力の概念と密接に結び付いた概念として定義されていますが、これは道徳的主体性が道徳的人格と同じであるということを受け入れることを意味するものではありません法的身分[...]

ビル・ゲイツが生生成AIの未来に疑問を呈す!

Microsoft共同創設者がGPT-5とAIの景色について洞察を共有 人工知能の絶えず進化する景色の中で、生成型AIは主導的な力となって浮上しています。過去1年間、多くの企業がこの技術に相当な投資を行い、2022年11月にOpenAIによる< a href=”https://www.voagi.com/chatgpt-amazing-yet-overhyped.html”>ChatGPTの大々的なローンチにつながりました。この進展は、変革的なAI駆動の進歩の時代に私たちを前進させるAIセクターにとって画期的な瞬間を刻みました。しかし、億万長者の慈善家であるビル・ゲイツが生成型AIの将来に疑問を投げかけるという興味深い展開があります。 GPTシリーズの革命: これまでの旅 OpenAIのGPTシリーズ(GPTはGenerative Pre-trained Transformerの略)は、業界全体でのAIの進歩の軌道を形作る上で重要な役割を果たしてきました。これらの言語モデルは、チャットボットからコンテンツ生成に至るまで、無数のAIアプリケーションの基盤を築きました。しかし、AIコミュニティはGPT-5を待ち望んでいますが、ビル・ゲイツは生成型AIがピークに達したのではないかという疑問を提起しています。 さらに読む: OpenAIの飛躍:GPT-4 Vision with Visual Superpowersを明らかにする ビル・ゲイツの見解:GPT-5は次の大幅な進歩なのか? MicrosoftがOpenAIの49%の株式を所有しているにもかかわらず、ビル・ゲイツはGPT-5の可能性に懐疑的です。彼は現在の生成型AIの状態が頭打ちに達した可能性があると主張しています。ゲイツは自分が間違っているかもしれないと認めつつも、GPT-2からGPT-4への飛躍を「驚異的」と表現し、OpenAIの一部の人々と意見が異なると述べています。 AIの未来:ビル・ゲイツの予測 ビル・ゲイツは、AIソフトウェアが2〜5年以内に精度が著しく向上し、コストが低下すると予測しています。これにより、新たな信頼性のあるアプリケーションへのドアが開かれます。しかし、ゲイツはAIの開発における初期の停滞期も予見しています。 AIを通じた途上国の力を高める ゲイツは、AIが途上国をエンパワーする可能性について、スマートフォンを通じて提供される健康アドバイスの魅力的な例を共有しています。AIを医療に統合することで、情報格差を埋め、資源制約のある地域での医療成果を改善する可能性があります。 AIのコストと信頼性:ゲイツの洞察 ゲイツは、AIのコストと信頼性の重要な問題に取り組んでいます。彼は、特にNVIDIAからのAIチップに関連するかなりの費用がかかり、ユニットあたり約3万ドルの費用がかかり、かなりのエネルギーを消費することを認めています。コストとパフォーマンスのバランスを取ることは、AIの景色における重要な課題です。 AIブラックボックス:謎の解読…

「ESAのセンチネルAPIに深く潜入」

ヨーロッパ宇宙機関は、さまざまな種類のリモートセンシングを活用して、地球観測を支援するコペルニクスプログラムの一環として、センチネルミッションを実施しています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us