Learn more about Search Results 結論 - Page 10

内部の仕組みを明らかにする:BERTのアテンションメカニズムの深い探求

イントロダクション BERT(Bidirectional Encoder Representations from Transformers)は、トランスフォーマーモデルと教師なし事前学習を活用した自然言語処理のためのシステムです。事前学習を行うことで、BERTはマスクされた言語モデリングと文予測の2つの教師なしタスクを通じて学習を行います。これにより、BERTはゼロからではなく、特定のタスクに適応することが可能になります。基本的に、BERTは言語を理解するためのユニークなモデルを使用した事前学習されたシステムであり、多様なタスクへの適用を容易にします。この記事では、BERTのアテンションメカニズムとその動作について理解しましょう。 さらに読む:BERTとは?ここをクリック! 学習目標 BERTのアテンションメカニズムを理解する BERTにおけるトークン化の方法 BERTにおけるアテンションの重みの計算方法 BERTモデルのPython実装 この記事はデータサイエンスブログマラソンの一環として公開されました。 BERTのアテンションメカニズム まず、アテンションとは、モデルが文の重要な入力特徴により大きな重みを置く方法の一つです。 以下の例を考えて、アテンションがどのように基本的に機能するかを理解しましょう。 例1 一部の単語に対して他の単語よりも高い注意が払われる 上記の文では、BERTモデルは次の単語「fell」の予測にとって、「cat」と動詞「jumped」により重みを置くことが重要であると判断するかもしれません。「cat」がどこからジャンプしたかを知るよりも、「cat」と「jumped」を知ることが重要です。 例2 次の文を考えてみましょう。 一部の単語に対して他の単語よりも高い注意が払われる 「spaghetti」という単語を予測するために、アテンションメカニズムはスパゲッティの品質「bland」よりも動詞「eating」により重みを大きくすることを可能にします。 例3…

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

「ハグフェース上のトップ10大きな言語モデル」

イントロダクション Hugging Faceは、自然言語処理の愛好家や開発者にとって宝庫となり、さまざまなアプリケーションに簡単に統合できる事前学習済み言語モデルの幅広いコレクションを提供しています。Large Language Models(LLM)の世界で、Hugging Faceは頼りになるプラットフォームとして際立っています。この記事では、Hugging Faceで利用可能なトップ10のLLMモデルを紹介し、言語理解と生成の進化する景色に貢献します。 さあ、始めましょう! Mistral-7B-v0.1 Mistral-7B-v0.1は、70億のパラメータを誇る大規模言語モデル(LLM)です。これは事前学習済みの生成テキストモデルとして設計されており、Llama 2 13Bが検証されたドメインで設定したベンチマークを上回ることで知られています。このモデルは、グループ化されたクエリアテンションやスライディングウィンドウアテンションなどの注意機構に特定の選択を行ったトランスフォーマーアーキテクチャに基づいています。Mistral-7B-v0.1は、Byte-fallback BPEトークナイザーも組み込んでいます。 ユースケースとアプリケーション テキスト生成:Mistral-7B-v0.1は、コンテンツ作成、創造的な文章作成、または自動ストーリーテリングなど、高品質のテキスト生成を必要とするアプリケーションに適しています。 自然言語理解:高度なトランスフォーマーアーキテクチャと注意機構を備えたこのモデルは、感情分析やテキスト分類などの自然言語理解を必要とするタスクに適用することができます。 言語翻訳:生成能力と大規模なパラメータサイズを考慮すると、このモデルはニュアンスのある文脈に即した正確な翻訳が重要な言語翻訳タスクで優れたパフォーマンスを発揮するかもしれません。 研究開発:研究者や開発者は、さまざまな自然言語処理プロジェクトでのさらなる実験や微調整のためにMistral-7B-v0.1をベースモデルとして活用することができます。 このLLMにはこちらでアクセスできます。 Starling-LM-11B-alpha この大規模言語モデル(LLM)は、110億のパラメータを持ち、NurtureAIから生まれました。このモデルは、その基盤としてOpenChat 3.5モデルを利用し、AIのフィードバックからの強化学習(RLAIF)によるfine-tuningを経ています。このアプローチでは、ヒトによってラベル付けされたランキングのデータセットを利用してトレーニングプロセスを誘導します。 ユースケースとアプリケーション Starling-LM-11B-alphaは、マシンとの対話方法を革新する潜在的な大規模言語モデルであり、オープンソースの性質、優れたパフォーマンス、多様な機能を備えており、研究者、開発者、クリエイティブプロフェッショナルにとって貴重なツールです。…

「ベクターデータベースは、生成型AIソリューションの未来をどのように形作るのか?」

紹介 生成AIの急速に進化する風景において、ベクトルデータベースの重要な役割がますます明らかになってきました。本記事ではベクトルデータベースと生成AIソリューションとのダイナミックな相乗効果について探求し、これらの技術的基盤が人工知能の創造性の将来を形作っているかを紐解きます。革新的なAIソリューションの最先端にもたらすベクトルデータベースの変革的な影響を解き放つため、この強力な連携の複雑さを旅してください。 学習目標 この記事では以下のベクトルデータベースの側面を理解するのに役立ちます。 ベクトルデータベースの重要性とその主要な構成要素 従来のデータベースとのベクトルデータベースの詳細比較 応用の観点からのベクトル埋め込みの探求 Pineconeを使用したベクトルデータベースの構築 langchain LLMモデルを使用したPineconeベクトルデータベースの実装 この記事はData Science Blogathonの一部として公開されました。 ベクトルデータベースとは何ですか? ベクトルデータベースとは、空間に格納されたデータの集合の形式です。しかし、ここでは数学的な表現で格納されているため、AIモデルが入力を覚えるのに便利であり、オープンAIアプリケーションが認知検索、推奨、テキスト生成を使用してさまざまなユースケースで活用できるようになっています。データの格納と検索は「ベクトル埋め込み」と呼ばれます。また、これは数値配列形式で表されます。トラディショナルなデータベースと比べて、非常に大規模でインデックス化された機能を持つAIの観点での検索ははるかに容易です。 ベクトルデータベースの特徴 これらのベクトル埋め込みのパワーを活用し、巨大なデータセット全体でのインデックス作成と検索を実現します。 あらゆるデータ形式(画像、テキスト、データ)と互換性があります。 埋め込み技術と高度なインデックス化された機能を採用しているため、与えられた問題のデータと入力の完全なソリューションを提供できます。 ベクトルデータベースは、数百の次元を含む高次元ベクトルを通じてデータを整理します。これらは非常に迅速に構成できます。 各次元は、それが表しているデータオブジェクトの特定の特徴または属性に対応しています。 従来のデータベースとベクトルデータベースの比較 図は従来のデータベースとベクトルデータベースのハイレベルなワークフローを示しています。 フォーマルなデータベースのやり取りはSQLステートメントを通じて行われ、データは行ベースおよび表形式で格納されます。…

合成データ生成のマスタリング:応用とベストプラクティス

この記事では、合成データ生成技術とそれらのさまざまなアプリケーションでの実装、および遵守すべきベストプラクティスについて説明します

「金融業界におけるAIの進出:自動取引からパーソナライズドバンキングへ」

財界は、人工知能(AI)の出現と統合によって、革命的な変化を目撃していますこの技術は、単なる付加要素ではなく、金融サービスの本質的な構造を再構築するための核となる要素です超人的なスピードで取引を実行する自動化取引アルゴリズムから個別の顧客に合わせたパーソナライズされたバンキング体験まで、AIによる金融業界の侵略が進行しています... 金融業界におけるAIの進出:自動化取引からパーソナライズされたバンキングへ Read More »

機械学習によるマルチビューオプティカルイリュージョンの作成:ダイナミックな画像変換のためのゼロショット手法の探索

アナグラムは、異なる角度から見るか、ひっくり返すことで外観が変化するイメージです。これらの魅力的な多角的視覚錯覚を生成するためには、通常、視覚知覚を理解してだます必要があります。しかし、新しいアプローチが登場し、これらの魅力的な多視点光学錯視を簡単かつ効果的に生成する方法を提供しています。 視覚錯覚を作成するためのさまざまなアプローチが存在しますが、ほとんどは人間がイメージをどのように理解するかについての特定の仮定に依存しています。これらの仮定はしばしば、われわれの視覚体験の本質をときどき捉えるだけの複雑なモデルにつながります。ミシガン大学の研究者たちは、新しい解決策を提案しています。人間が物事を見る方法に基づいたモデルを構築するのではなく、テキストからイメージへの拡散モデルを使用します。このモデルは人間の知覚について何も仮定しません。データのみから学習します。 この手法は、フリップや回転時に変形するイメージなど、古典的な錯視を生成するための新しい方法を提案しています。さらに、ピクセルを並び替えると外観が変化する「視覚アナグラム」と呼ばれる新しい錯視の領域にも進出しています。これには、フリップ、回転、ジグソーパズルのような複数の解を持つより複雑な変換も含まれます。この手法は、3つや4つの視点にまで拡張され、魅力的な視覚変換の範囲が広がっています。 この手法が機能するための鍵は、ビューを注意深く選択することです。画像に適用される変換は、ノイズの統計的特性を維持する必要があります。なぜなら、このモデルはランダム、独立、同一分布のガウスノイズを仮定してトレーニングされるからです。 この手法では、画像をさまざまな視点からデノイズするために、拡散モデルを利用して複数のノイズの推定値を生成します。これらの推定値は、逆拡散プロセスの1つのステップを容易にするために組み合わされます。 この論文では、これらの視点の効果を支持する経験的根拠が示され、生成される錯視の品質と柔軟性が紹介されています。 結論として、このシンプルでありながら強力な手法は、魅力的な多視点光学錯覚を作成するための新しい可能性を開拓しています。人間の知覚に対する仮定を避け、拡散モデルの機能を活用することで、視覚変換の魅力的な世界への新たなアプローチを提供しています。フリップ、回転、ポリモーフィックジグソーパズルなど、この方法は、視覚理解を魅了し挑戦する錯視を作り出すための多目的なツールを提供します。

人間に戻る:AIの道:コードからぬいぐるみまでの旅

人工知能(AI)の急速に進化する風景の中で、私たちはアプローチの転換を求める分岐点に立っています。特にシリコンバレーを中心に、テック業界では既存の製品にAIを統合し、増分のイノベーションを生み出す傾向があります。この戦略は、AIに対する一般の人々の理解を深め、抵抗を減らすという点で重要な役割を果たしてきました。しかし、このアプローチは頭打ちになりつつあります。AIの革命的な可能性を実現するためには、人間の根本的なニーズと行動に戻り、AIアプリケーションのための新しい革新的な「チャネル」を築かなければなりません。AIは感性的にならなければなりません! その重要性を強調するため、著名な作家でありデザイン思考家であるドン・ノーマンは、彼の画期的な著書「日常のデザイン」で、製品デザインを人間の本能と反応に整合させることの重要性を強調しています。この原則は、AIアプリケーションにおいても重要です。既存の製品にAIを埋め込むだけではなく、基本的な人間の経験とニーズを理解し、活用することが重要です。 これらの人間中心のデザインを発見するための効果的な手法の一つは、「デザインフィクション」です。この手法は、未来に自分自身を投影して、SF要素や弱いシグナルを活用して新たな使い方を概念化することを意味します。将来のシナリオを想像し、逆算して現在の製品に至るロードマップを作成することで、革新的な使い方を見つけることができます。 AIの変革的な性質を持つためには、持続可能な統合のための新たなパラダイムが必要です。そのためには、ある程度の科学的な洞察力が必要です。DeepMind、Google Research、FAIR、OpenAI、およびNvidiaなどの組織は、科学的な進歩によってこれに足場を築いています。ChatGPTなどの初期のプロトタイプは驚きと可能性を提供しました。次のステップでは、AIを現行の製品に埋め込んで利用性を向上させることが求められます。しかし、真に革新的な使い方を見つけるためには、技術の可能性に合ったものを特定することが重要です。 iPhoneのタッチスクリーンやApp Storeによってもたらされた革命を考えてみてください。スティーブ・ジョブズは、ブラックベリーのキーボードではなくタッチスクリーンを提唱したのは単なる姿勢ではなく、ユーザーの好みとニーズを深く理解していたからです。このアプローチは、最近OpenAIとの議論で示唆されたJony Iveの考え方に似ています。AIにおける同様の画期的な開発を暗示しています。 これらの革新的な使い方を特定するために、私たちは現行の製品にとどまるのではなく、SFや映画の世界に飛び込んでみるべきです。作家たちはそこで未来を予見しています。その一つの良い例は映画やテレビシリーズ「リミットレス」です。NZTという薬を通して人間の能力を高めるという中心テーマは、AIの増強パラダイムと共鳴します。主人公のエディ・モラやブライアン・フィンチは、注意を分散させず、後で細部を思い出すことを示しています。このコンセプトは、深い人類学的なニーズと増強パラダイムに合致します。WhatsAppの会話に集中していたとき、チームメイトが今朝コーヒーマシンであなたに話したことを思い出せたら、それはどんなに素晴らしいことでしょうか。 Rewind AIなどの企業も同様のコンセプトを探求しています。Rewind AIは、基本的なフォトエディティングやチャットボットを超える革命的な技術です。ユーザーは、生活の瞬間を卓越した明瞭さと詳細さで再訪・思い出すことができます。それを物語的な「リミットレス」の薬のようなデジタル版と考えてください。Rewind AIを使用すると、ユーザーは写真アルバムをめくるように、過去の経験を手軽にアクセスして再生することができます。さらに、Rewind AIは、スクリーンから離れているときでも、日常生活を記憶する力を与えるウェアラブル技術の開発も模索しています。最近リリースされたGemini Nanoのような軽量AIモデルのポテンシャルも強調されています。このAI技術の最新進歩は、コンパクトで効率的かつ驚くべきパワフルさを備えた、機械学習の未来を具現化しています。このような軽量でありながら強力なAIモデルを受け入れることで、AIが単なる臨時のアシスタントでなく、私たちの日常生活の一部として完全かつなめらかに統合された世界に一歩近づくのです。 結論として、AIの未来は既存の製品を単に強化するだけでなく、私たちの最も深い人間の本能とニーズと共感する新しい製品を作り出すことにあります。デザインフィクションからインスピレーションを得て、人間の行動の本質を理解することにより、革新的でありながら自然な傾向と欲望と深い共鳴を持つAIアプリケーションを開発することができます。私たちがこの旅に乗り出すにあたり、先見の明のあるデザイナーとAIの専門家との協力は、この変革的なテクノロジーの真の可能性を引き出し、AIが単なるツールではなく、私たちの人間の体験の拡張となる未来への道を開きます。 この記事は「人間に戻る:AIの旅、コードから愛撫へ」がMarkTechPostで最初に掲載されました。

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

「GPTの進化を探る ChatGPT-4の新機能と、コンバーショナルAIの再定義」

以前のバージョンをベースに、多様性と倫理的考慮を特徴とするConversational AIのChatGPT-4の進化を探求し、新たな可能性を解き放つ

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us