Learn more about Search Results 構成 - Page 10

次元性の祝福?!(パート1)

「これらの問題の1つまたは複数について、慎重に選ばれた科学者のグループが夏に一緒に取り組めば、重要な進展が期待できると私たちは考えています」と提案は述べましたジョンはまだ知りませんでしたが...

一時的なグラフのベンチマーク (Ichijiteki na gurafu no benchimāku)

最近では、公開データセットや標準化された評価プロトコルの提供により、静的グラフにおける機械学習において重大な進展がなされています

「オンライン大規模な推薦のためのデュアル拡張二つのタワーモデル」

推薦システムは、ユーザーに個別にカスタマイズされた提案を提供するために設計されたアルゴリズムですこれらのシステムは、ユーザーが関連するアイテムを発見するのを助けるため、さまざまなドメインで使用されています

ODSCのAI週間まとめ:12月8日の週

人工知能は、報道を通じて光の速さで進化してきましたODSCで取り上げた内容や他のニュースを振り返り、見逃してしまった話題も紹介しますこれにより、あなたはAIについての最新情報を把握できるでしょう

『UltraFastBERT:指数関数的に高速な言語モデリング』

言語モデルと生成型AIは、その能力で有名であり、AI業界では注目されている話題です世界中の研究者たちは、効果と能力を向上させていますこれらのシステムは、通常、深層学習モデルであり、広範なラベル付きデータで事前学習され、自己注意のためのニューラルネットワークを組み込んでいますフィードフォワード、再帰、埋め込み、注意の各種レイヤーを使用して、入力テキストを処理し、[...]を生成します

最も近い近隣法を用いた写真モザイク:デジタルアートのための機械学習

ここに例があります!ズームインアニメーションフルスクリーンでの視聴をおすすめします(動画提供者の著者)技術革新は急速に進んでおり、デジタルストレージは非常に安くてアクセスしやすくなりましたさらに、ほとんどの人が高画質の画像を撮影できるカメラを搭載したスマートフォンを持っています大多数の人は...

「Power BI ビジュアライゼーションの究極ガイド」

イントロダクション Power BIは、データサイエンスの中でも強力なツールとして浮上しており、データに基づく洞察に根ざした情報を提供することで、企業が情報に基づいた意思決定を行うことを可能にしています。Microsoftによって開発されたPower BIビジュアライゼーションは、ユーザーがデータを視覚的に表現し、洞察を組織全体に円滑に伝達することを可能にします。また、広範なデータソースとの接続を確立しながら、アプリケーションやウェブサイトにシームレスに埋め込む能力も注目されています。 間違いなく、データサイエンスの分野で最も重要な要素の一つは、データの可視化の実践です。これは、視覚的要素(チャート、グラフ、マップなど)を用いて情報やデータをグラフィカルに説明することを意味します。これらの視覚ツールを活用することで、データの可視化はデータをより理解しやすくし、傾向や外れ値、パターンを判断しやすくします。要するに、Power BIは生データを視覚的に一貫性のある語りに変換する能力を持つ、典型的なツールであり、複雑なデータセットの普遍的な理解を向上させます。 Power BIビジュアライゼーションの理解 Power BIビジュアライゼーションは、Power BIを使用してデータをグラフィカルに表現するプロセスです。これにより、複雑なデータセットをより直感的で視覚的な形式で理解することができます。Power BIビジュアライゼーションは重要であり、テキストベースのデータでは明らかではない複雑な概念を理解したり、新しいパターンを識別したりすることができます。 Power BIビジュアライゼーションのメリットは多岐に渡ります。データと対話することができ、詳細な情報を得るためにチャートやグラフを掘り下げたり、他の人とレポートを作成して共有したりすることができます。また、ユーザーはユニークな360度のビジネスビューを持つパーソナライズされたダッシュボードを作成することも可能です。 Power BIビジュアライゼーションの種類 Power BIは、データを異なる方法で表現するための幅広いビジュアライゼーションを提供しています。 A. チャート チャートは、Power BIでのデータのグラフィカル表現です。これを使用して、複雑なデータセットを簡素化し、データを理解しやすく解釈できるようにします。Power BIはさまざまなチャートの種類を提供しており、それぞれ異なる種類のデータやデータの可視化タスクに適しています。 1.…

新しいCMUとMetaによるAI研究、PyNeRFの導入:スケールに意識したグリッドベースのレンダリングにおけるニューラル輝度場の進化

ニューラル・ラディアンス・フィールド(NeRF)は、シーン再構成時のスケールの変動とエイリアシングのアーティファクトを減らすためにどのように改善できるのでしょうか? CMUとMetaからの新しい研究論文では、ピラミッド状のニューラル・ラディアンス・フィールド(PyNeRF:Pyramidal Neural Radiance Fields)を提案することで、この問題に取り組んでいます。PyNeRFは、異なる空間グリッド解像度でモデルヘッドを訓練することにより、さまざまなカメラ距離でシーンを再構成する際に生じる視覚的な歪みを軽減するのに役立ちます。PyNeRFはパフォーマンスに大きな影響を与えることなく、NeRFを高速化しながら高品質のシーン再構成を維持する効果的な解決策です。 NeRFに触発されて、この研究ではボクセルグリッドやテンソル近似を使用して描画速度とメモリ効率を向上させるためのグリッドベースの手法(NSVF、Plenoxels、DVGO、TensoRF、K-Planes、Instant-NGP)を探求しています。PyNeRFは、速度の利点と品質の維持を兼ね備え、Instant-NGPやNerfactoなどの他の高速描画手法を凌駕し、描画品質とトレーニング速度で優れた結果を示します。 Nerfを含む最近のニューラルボリューメトリックレンダリングの進歩は、現実的な視点合成の進展をもたらしています。ただし、NeRFはMLP表現と仮定により遅いため、エイリアシングが発生します。Mip-NeRFなどのグリッドベースの手法はトレーニングを加速しますが、位置符号化との互換性に欠けます。PyNeRFは、分割と征服のNeRF拡張と古典的な技術からインスピレーションを受けています。PyNeRFのモデルピラミッドはレイに沿ってサンプリングされ、分割アプローチが採用されることにより、高速化されたNeRF実装の速度を維持しながら、描画品質が改善されます。効率的かつ高品質な新しい視点合成のための幅広い解決策を提供します。 研究では、より大きなボリュームサンプルの描画に向けて、グリッドベースのモデルを修正し、異なる空間グリッド解像度でモデルヘッドを訓練することを提案しています。バックボーンモデルとしてSUDSを使用し、徐々により高い解像度でトレーニングします。学習した特徴をボクセルグリッドやハッシュテーブルなどの構造に保存するさまざまなグリッドベースの加速手法について議論されています。研究者は、LaplacianPyNeRFや他の補間手法と比較して、特徴グリッドの再利用と2Dピクセル領域の使用の影響を評価しています。主な貢献は、既存のグリッド描画手法において描画速度を保持しながら視覚的な忠実度を向上させる多目的の分割手法です。 PyNeRFは、合成と実世界のシーンにおいて誤差率を20〜90%低下させ、パフォーマンスへの影響を最小限に抑えることで描画品質を大幅に向上させます。Mip-NeRFと比較して、トレーニング速度が60倍速い状態で誤差を20%削減します。PyNeRFは2時間でSUDS品質に収束し、さまざまなメトリックでベースラインを凌駕しますが、SUDSには4時間かかります。さまざまな合成およびマルチスケールブレンダーデータセットでのテストと評価によって、PyNeRFの高品質な再構築はArgoverse 2 Sensorデータセットでの評価に証明されています。 まとめると、PyNeRFは高速ボリューメトリックレンダラーのアンチエイリアシング機能の向上において印象的な進展を示し、さまざまなデータセットで優れた結果を示しています。この手法は、現実世界のキャプチャを共有することでニューラルボリューメトリックレンダリングの研究を更に進めることを提唱していますが、高品質なニューラル表現の効率的な構築におけるセキュリティとプライバシーのリスクにも言及しています。 今後の研究は、追加の実世界のキャプチャの共有や統合ボリュームを階層レベルに割り当てるための代替マッピング関数の探求から利益を得ることができるでしょう。モデルのトレーニング中にプライバシーフィルタリングのためにセマンティック情報を使用することも有益な調査方向です。将来の興味深い展望には、高速なNeRF手法において描画速度を保持しながら視覚的な忠実度を向上させるためのアーキテクチャのさらなる探求が含まれます。潜在的な研究領域には、ピラミッドアプローチを他の高速NeRF実装に適用し、そのパフォーマンスを評価することがあります。

「SageMakerエンドポイントとしてカスタムMLモデルを展開する」

「機械学習(ML)モデルを開発するには、データ収集からモデルの展開までの重要なステップがありますアルゴリズムの改善やテストを通じてパフォーマンスを確認した後、最後の重要なステップは...」

Amazon AlexaのAI研究者がQUADRoを発表:QAシステムの向上に向けた画期的なリソースで、440,000以上のアノテーション付きの例があります

人工知能(AI)と機械学習(ML)の能力は、あらゆる可能な産業に進出することを成功裏に可能にしました。最近では、大規模言語モデル(LLM)と質問応答システムの導入により、AIコミュニティは大きな進歩を遂げています。事前計算されたデータベースから効率的に応答を取得することは、自動質問応答(QA)システムの開発における一般的なステップです。 主なQAパラダイムには、オープンブック型とクローズドブック型の2つがあります。オープンブック型、またはリトリーブアンドリード型は、適切な素材を大量の文書コーパス、頻繁にインターネットから取得する2つの手順を経て、異なるモデルや手法を適用して取得された素材から解決策を取り出す手法です。一方、クローズドブック型は最近の手法であり、外部のコーパスを利用せずにT5などのSeq2Seqモデルを基にしたモデルを訓練することで、結果を生成します。 クローズドブック技術は優れた結果を示しているものの、多くの産業アプリケーションに対してリソースが過剰であり、システムのパフォーマンスに重大なリスクをもたらす可能性があります。質問応答型データベース(DBQA)は、パラメータや大規模なコーパスの情報に頼るのではなく、事前生成された質問応答のデータベースから応答を取得する方法です。 これらのシステムの主要な部分は、質問と回答のデータベース、データベースのクエリに対する検索モデル、および最適な回答を選ぶランキングモデルです。DBQA技術により、迅速な推論と再学習モデルなしで新しいペアを追加できる能力が可能となり、新しい情報を導入することができます。 DBQA技術の課題の一つは、検索およびランキングモデルの開発における充分なトレーニングデータの不足です。既存のリソースはスコープと内容の面で不足しており、注釈プロセスの品質を向上させる必要があるものや、質問と質問の類似性に焦点を当て、回答を無視するものが多数存在しています。 これらの課題に対処するため、研究者チームは質問応答データベースの検索に関するデータセットとモデルであるQUADRoを提案しました。これは訓練と評価のために特別に作成された新しいオープンドメインの注釈リソースです。リポジトリの15,211の入力質問には、各質問に関連する30の質問応答ペアがあります。このコレクションには合計で443,000の注釈付きサンプルが含まれています。入力クエリに対する各ペアの重要性を示すバイナリインジケータがラベル付けされています。 研究チームはまた、このリソースの品質と特性をいくつかの重要なQAシステムコンポーネントに関して評価するための徹底した実験も行いました。これらの要素には、トレーニング方法、入力モデルの構成、および回答の関連性が含まれます。実験は、このデータセットで訓練されたモデルの挙動とパフォーマンスを検討することで、関連する応答を取り出すために提案された方法がどれだけうまく機能するかを示しました。 まとめると、この研究は、自動品質保証システムにおけるトレーニングとテストデータの不足を解決するために、有用なリソースを導入し、リソースの属性を慎重に評価することで、包括的な理解を支援しています。トレーニング戦略と回答の関連性のような重要な要素に重点を置くことで、評価が補完されます。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us