Learn more about Search Results ボタン - Page 10

スピーチファイのレビュー:2023年の究極のテキスト音声アプリは?

信頼できるテキスト読み上げアプリをお探しですか?このSpeechifyのレビューをチェックして、移動中の読書の究極のソリューションを発見しましょう

NVIDIA RTXビデオスーパーレゾリューションのアップデートがビデオ品質や詳細の保全を向上させ、GeForce RTX 20シリーズのGPUへの拡張も行われました

今日、NVIDIAはRTXビデオスーパーレゾリューション(VSR)のアップデートを発表しました。このアップデートにより、全体的なグラフィカルな忠実度が向上し、詳細が保持され、ネイティブのビデオのアップスケーリングとGeForce RTX 20シリーズのデスクトップおよびノートPCのGPUのサポートが可能になります。 RTX VSRなどのAIアシストで、より向上した創造性や生産性から、爆速のゲームまで、詳細はAI向けのRTXページをご覧ください。 また、今週の「NVIDIA Studio」では、TwitchパーソナリティのRunebeeさんが自身のインスピレーション、ストリーミングのヒント、およびAIとRTX GPUの加速をどのように活用しているかについて共有しています。 そして、10月にはお化けのハロウィンテーマのアート、11月には収穫と秋をテーマにした作品を投稿してくださることをお忘れなく。インスピレーションの源として、iryna.blender3dさんなどのアーティストの作品をTwitterでご覧ください。 The #SeasonalArtChallenge continues on with an incredible render from iryna.blender3d (IG). 🎃 Share your spooky/Halloween-themed…

アップルとCMUの研究者が新たなUI学習者を披露:連続機械学習を通じてアプリのアクセシビリティを革新

機械学習は、さまざまな分野でますます統合されています。その普及は、ユーザーインターフェイス(UI)の世界を含むすべての業界に広がっており、意味論的データを予測するために重要です。このアプリケーションは、利便性を向上させ、テストを簡素化するだけでなく、UIに関連するタスクを自動化することで、効率的で効果的なアプリケーションを実現します。 現在、多くのモデルは主に人間が評価した静止したスクリーンショットのデータセットに依存しています。しかし、このアプローチは高価であり、一部のアクティビティにおいてミスの誤った傾向を露呈する可能性があります。ヒューマンアノテーターは、スナップショットからUI要素がタップ可能であるかどうかを評価する際に、ライブアプリ内のUI要素との相互作用ができないため、視覚的な手がかりだけに頼る必要があります。 モバイルアプリケーションビューの固定されたスナップショットのみを記録するデータセットを使用することの欠点にもかかわらず、これらのデータセットは使用および維持するのに高価ですが、ディープニューラルネットワーク(DNN)のトレーニングにおいて依然として貴重です。 そのため、アップルの研究者はカーネギーメロン大学との共同で「Never-Ending UI Learner」というAIシステムを開発しました。このシステムは実際のモバイルアプリケーションと持続的に相互作用し、UIデザインパターンと新しいトレンドの理解を継続的に向上させることができます。このシステムはモバイルデバイス向けのアプリストアからアプリを自動的にダウンロードし、それぞれを徹底的に調査して新鮮で難解なトレーニングシナリオを見つけ出します。 Never-Ending UI Learnerは現在までに5,000時間以上のデバイスを調査し、6,000以上のアプリで50万回以上のアクションを実行しました。この長期間の相互作用により、タップ可能性を予測するための3つの異なるコンピュータビジョンモデルがトレーニングされます。また、ドラッグ可能性を予測するためのモデルと、画面の類似度を判断するためのモデルもトレーニングされます。 この研究では、アプリケーション内のユーザーインターフェースのコンポーネントにタップやスワイプなどの多くの相互作用を行います。研究者たちは、設計されたヒューリスティクスを使用してUI要素を分類し、ボタンがタッチできるか、画像が移動できるかなどの特性を識別すると強調しています。 収集されたデータの助けを借りて、UI要素のタップ可能性とドラッグ可能性、および画面の類似度を予測するモデルがトレーニングされます。エンドツーエンドの手順では、人間によるラベル付け例がさらに必要ありませんが、プロセスは人間によりラベル付けされたデータで訓練されたモデルで開始することができます。 研究者たちは、このアプリを積極的に調査する手法には利点があると強調しています。これにより、典型的な人間によるラベル付けデータセットが見落とす可能性のある困難な状況を機械が特定するのに役立ちます。画像が常にはっきりしないため、スクリーン上でタッチできるすべてのものに人間が気付かないことがあるかもしれません。しかし、このシステムはアイテムをタップしてそれが何が起こるかをすぐに観察できるため、より明確で正確な情報を提供します。 研究者たちは、このデータに基づいてトレーニングされたモデルが時間の経過とともに改善する様子を実証しました。タップ可能性の予測は、5回の訓練ラウンド後に86%の精度に達しました。 研究者たちは、アクセシビリティの修復に焦点を当てたアプリケーションは、微妙な変化を捉えるためにより頻繁な更新を受けることが有益であると強調しました。一方で、UIの変更がより大きな蓄積を可能にするより長い間隔は、サマリーズやデザインパターンマイニングのようなタスクにとって好ましいかもしれません。再トレーニングと更新のための最適なスケジュールの確立には、さらなる研究が必要です。 この研究は、絶え間ない学習の可能性を強調し、システムがより多くのデータを収集して適応し進化することを可能にします。現在のシステムはタップ可能性などの単純な意味論モデリングに焦点を当てていますが、アップルは同様の原則を適用してモバイルUIやインタラクションパターンのより高度な表現を学ぶことを望んでいます。

ウェルセッドラボのAIボイスジェネレーターのレビュー(2023年10月)

WellSaid Labsは最高のAI音声生成ツールでしょうか?続けて読んで、数秒でAI音声を生成する方法を学びましょう!

『プロンプトブリーダーの内部:Google DeepMindの新しい自己改善プロンプト技術』

「論理的思考と即座の進化・最適化が、大規模言語モデル(LLM)における次の重要なフロンティアとして認識されています私たちはみな、AutoGPTやBabyAGIのようなプロジェクトに魅了されてきました...」

Japanese AI規制- 仮定はありませんか?それとも何もしない?

バイアスは、任意のモデルに関して規制の対象となる考慮事項の一つです生成AIは、この考えを再び主流に押し上げました私の経験では、これについては…

AIにおける複雑さと本質のトレードオフ:知っておくべきこと

データサイエンティストにとって、真実の情報は聖杯ですAIを例によって教えられるソフトウェアと考えれば、指示ではなく選択した正しい例が優れたパフォーマンスをするシステムの構築に重要ですこれは検証済みの例を反映する記録データです...

アラゴンAIレビュー:2023年における究極のAIヘッドショット生成器?

究極のAIヘッドショットジェネレーターをお探しですか? このAragon AIのレビューで知るべきすべてを学ぶために、他に探す必要はありません!

新しいAmazon KendraのWebクローラーを使用して、ウェブにクロールされたコンテンツをインデックス化します

この記事では、ウェブサイトに保存された情報のインデックス化方法と、Amazon Kendraのインテリジェント検索を使用して、内部および外部のウェブサイトに保存されたコンテンツから回答を検索する方法を紹介しますさらに、機械学習によるインテリジェント検索は、キーワード検索があまり効果的ではない、自然言語のナラティブコンテンツを持つ非構造化ドキュメントから質問に対する回答を正確に取得することができます

「AI ソングカバージェネレーターのトップ10」

「人工知能(AI)がクリエイティブ分野と交差する時代において、AIを搭載した曲カバージェネレーターの出現が花開いていますこれらの最先端ツールは、テクノロジーとクリエイティビティの間のギャップを埋め、アーティストや愛好家が個人の個性とプロの技を兼ね備えた魅力的なカバーを制作することを可能にしていますあなたが経験豊富なミュージシャンであるかどうかに関わらず、」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us