Learn more about Search Results で見る - Page 10
- You may be interested
- データストーリーテリングの芸術を習得す...
- 「リードジェネレーションにおいて直接参...
- Eleuther AI Research Groupが、Classifie...
- 自動小売りチェックアウトは、ラベルのな...
- ソロプレナーズ向けの11の最高のAIツール...
- 「共通の悪いデータの10つのケースとその...
- ウィンブルドンがAIによる実況を導入
- 「スタートアップ向けの30以上のAIツール...
- A/Bテストの意味を理解する:厳しい質問で...
- 「捕獲再捕獲法」
- データ体験の再発明:生成的AIと現代的な...
- 「2つのPandas DataFrameを比較するための...
- OpenAIとLangChainによるMLエンジニアリン...
- ChatGPT モデレーション API 入力/出力制御
- Google DeepMindによる新たなブレイクスル...
文の補完のための言語モデル
最近、GPTなどの言語モデルが非常に人気になり、ChatGPTや他の会話型AIシステムなど、さまざまなテキスト生成タスクに使用されていますこれらの言語モデルは...
「仮説検定とA/Bテスト」
「データに基づく意思決定の柱」
テキストから音声へ – 大規模な言語モデルのトレーニング
はじめに 音楽家の声コマンドをAIが受け取り、美しいメロディックなギターサウンドに変換する世界を想像してみてください。これはSFではありません。オープンソースコミュニティでの画期的な研究「The Sound of AI」の成果です。本記事では、「テキストからサウンドへ」というジェネレーティブAIギターサウンドの範囲内で、「ミュージシャンの意図認識」のための大規模言語モデル(LLM)の作成の道のりを探求します。このビジョンを実現するために直面した課題と革新的な解決策についても議論します。 学習目標: 「テキストからサウンド」のドメインでの大規模言語モデルの作成における課題と革新的な解決策を理解する。 声コマンドに基づいてギターサウンドを生成するAIモデルの開発において直面する主な課題を探求する。 ChatGPTやQLoRAモデルなどのAIの進歩を活用した将来のアプローチについて、ジェネレーティブAIの改善に関する洞察を得る。 問題の明確化:ミュージシャンの意図認識 問題は、AIが音楽家の声コマンドに基づいてギターサウンドを生成できるようにすることでした。例えば、音楽家が「明るいギターサウンドを出してください」と言った場合、ジェネレーティブAIモデルは明るいギターサウンドを生成する意図を理解する必要があります。これには文脈とドメイン特有の理解が必要であり、一般的な言語では「明るい」という言葉には異なる意味がありますが、音楽のドメインでは特定の音色の品質を表します。 データセットの課題と解決策 大規模言語モデルのトレーニングには、モデルの入力と望ましい出力に一致するデータセットが必要です。ミュージシャンのコマンドを理解し、適切なギターサウンドで応答するために、適切なデータセットを見つける際にいくつかの問題が発生しました。以下に、これらの問題の対処方法を示します。 課題1:ギターミュージックドメインのデータセットの準備 最初の大きな課題は、ギターミュージックに特化したデータセットが容易に入手できないことでした。これを克服するために、チームは独自のデータセットを作成する必要がありました。このデータセットには、音楽家がギターサウンドについて話し合う会話が含まれる必要がありました。Redditの議論などのソースを利用しましたが、データプールを拡大する必要があると判断しました。データ拡張、BiLSTMディープラーニングモデルの使用、コンテキストベースの拡張データセットの生成などの技術を使用しました。 課題2:データの注釈付けとラベル付きデータセットの作成 2番目の課題は、データの注釈付けを行い、ラベル付きのデータセットを作成することでした。ChatGPTなどの大規模言語モデルは一般的なデータセットでトレーニングされることが多く、ドメイン固有のタスクに対してファインチューニングが必要です。例えば、「明るい」という言葉は、光や音楽の品質を指す場合があります。チームは、正しい文脈をモデルに教えるために、Doccanoという注釈付けツールを使用しました。ミュージシャンは楽器や音色の品質に関するラベルをデータに注釈付けしました。ドメインの専門知識が必要であるため、注釈付けは困難でしたが、チームはデータを自動的にラベル付けするためにアクティブラーニングの手法を一部適用し、これに対処しました。 課題3:MLタスクとしてのモデリング – NERアプローチ 適切なモデリングアプローチを決定することもまた、別のハードルでした。トピックまたはエンティティの識別として見るべきでしょうか?チームは、モデルが音楽に関連するエンティティを識別して抽出できるNamed Entity Recognition(NER)を採用しました。spaCyの自然言語処理パイプライン、HuggingFaceのRoBERTaなどのトランスフォーマーモデルを活用しました。このアプローチにより、ジェネレーティブAIは音楽のドメインにおける「明るい」や「ギター」といった単語の文脈を認識できるようになりました。 モデルトレーニングの課題と解決策…
「AIによる生成写真を用いた文学作品における信憑性のあるキャラクターの創造」
「空白のページを見つめながら、キャラクターに命を吹き込むことに苦労したことはありませんか? AIが生成した写真を視覚化し、執筆にリアリティを与えるツールがあると想像してみてくださいAIが生成した写真を使って、文学作品の信憑性のあるキャラクターを作り上げる方法について詳しく説明します詳細はこちらをご覧ください」
「ロボット支援TMSによるうつ病治療の可能性を探る研究」
「韓国の科学者たちは、うつ病の治療における経頭蓋磁気刺激(TMS)コイルの配置のために開発されたカスタムロボットシステムを従来の手動方法と比較しました」
BYOL(Bootstrap Your Own Latent)— コントラスティブな自己教示学習の代替手段
『今日の論文分析では、BYOL(Bootstrap Your Own Latent)の背後にある論文に詳しく触れますこれは、対比的な自己教師あり学習技術の代替手法を提供します...』
「OpenAI WhisperとHugging Chat APIを使用したビデオの要約」
イントロダクション 建築家ルートヴィヒ・ミース・ファン・デル・ローエが有名になったように、「少ないことがより多い」ということは、要約の意味です。要約は、膨大なテキストコンテンツを簡潔で関連性のある要素にまとめるための重要なツールであり、現代の情報消費スピードに適したものです。テキストアプリケーションでは、要約は情報の検索を支援し、意思決定をサポートします。Generative AI(OpenAI GPT-3ベースのモデルなど)の統合により、テキストから重要な要素を抽出し、ソースの本質を保持したまま意味のある要約を生成するというプロセスが革新されました。興味深いことに、Generative AIの機能は、テキストにとどまらず、ビデオ要約にも広がっています。これには、ビデオから重要なシーン、対話、概念を抽出し、コンテンツの要約を作成することが含まれます。ビデオ要約は、短い要約ビデオを生成したり、ビデオコンテンツの分析を行ったり、ビデオのキーセクションを強調表示したり、ビデオのテキスト要約を作成するなど、さまざまな方法で実現できます。 Open AI Whisper APIは、自動音声認識技術を活用して話された言語を書かれたテキストに変換することで、テキストの要約の正確さと効率性を向上させます。一方、Hugging Face Chat APIは、GPT-3などの最先端の言語モデルを提供します。 学習目標 この記事では、以下のことを学びます: ビデオ要約の技術について学ぶ ビデオ要約の応用について理解する Open AI Whisperモデルのアーキテクチャを探索する Open AI WhisperとHugging Chat APIを使用してビデオテキスト要約を実装する方法を学ぶ…
自然言語処理のための高度なガイド
イントロダクション 自然言語処理(NLP)の変革的な世界へようこそ。ここでは、人間の言語の優雅さが機械の知能の正確さと出会います。NLPの見えない力は、私たちが頼りにしているデジタルのインタラクションの多くを支えています。このナチュラルランゲージプロセッシングガイドは、あなたの質問に応答するチャットボット、意味に基づいて結果を調整する検索エンジン、声のアシスタントがリマインダーを設定するなど、さまざまなアプリケーションで使用されます。 この包括的なガイドでは、ビジネスを革新しユーザーエクスペリエンスを向上させる、最先端のNLPの応用について掘り下げていきます。 文脈埋め込みの理解: 単語は単なる分離された単位ではありません。文脈によってその意味が変わります。Word2Vecのような静的な埋め込みから文脈を必要とする対話型な埋め込みまで、埋め込みの進化について見ていきます。 トランスフォーマーとテキスト要約の技術: 要約は単なるテキストの切り詰めを超える難しい仕事です。トランスフォーマーアーキテクチャとT5などのモデルについて学び、成功する要約の基準がどのように変わっているかを理解しましょう。 深層学習の時代には、層や複雑さのために感情を分析することは困難です。特にトランスフォーマーアーキテクチャに基づく深層学習モデルは、これらの複雑な層を解釈することに長けており、より詳細な感情分析を提供します。 有用な洞察を得るために、Kaggleのデータセット ‘Airline_Reviews’ を使用します。このデータセットには実世界のテキストデータが含まれています。 学習目標 ルールベースのシステムから深層学習アーキテクチャへの移行を認識し、特に転換の重要な瞬間に重点を置きます。 Word2Vecなどの静的単語表現から動的な文脈埋め込みへのシフトについて学び、言語理解における文脈の重要性を強調します。 トランスフォーマーアーキテクチャの内部構造と、T5などのモデルがテキスト要約を革新している方法について詳しく学びます。 特にトランスフォーマーベースのモデルなどの深層学習を活用して、テキストの感情に具体的な洞察を提供できるかを発見します。 この記事はデータサイエンスブログマラソンの一部として公開されました。 NLPの深い探求 自然言語処理(NLP)は、機械に人間の言語を理解し、解釈し、応答することを教える人工知能の分野です。この技術は、人間とコンピュータをつなげ、より自然なインタラクションを可能にします。スペルチェックやキーワード検索などの簡単なタスクから、機械翻訳、感情分析、チャットボットの機能などのより複雑な操作まで、さまざまなアプリケーションでNLPを使用できます。これにより、音声アクティベーションされた仮想アシスタント、リアルタイム翻訳サービス、さらにはコンテンツ推奨アルゴリズムなどが機能することが可能になります。自然言語処理(NLP)は、言語学、コンピュータサイエンス、機械学習の知識を結集し、テキストデータを理解できるアルゴリズムを作成することで、現代のAIアプリケーションの基盤となっています。 NLPの技術の進化 NLPはこれまでに大きく進化し、ルールベースのシステムから統計モデル、そして最近では深層学習へと進化してきました。言語の特異性を捉えるための旅は、従来の袋状モデルからWord2Vec、そして文脈埋め込みへの変化によって見ることができます。計算能力とデータの利用可能性が向上するにつれて、NLPは言語の微妙なニュアンスを理解するために洗練されたニューラルネットワークを使用するようになりました。現代の転移学習の進歩により、モデルは特定のタスクを改善し、実世界のアプリケーションでの効率と正確性を確保することができます。 トランスフォーマーの台頭 トランスフォーマーは、多くの最先端NLPモデルの基盤となる一種のニューラルネットワークアーキテクチャです。トランスフォーマーは、再帰的または畳み込み層に重点を置いた従来のモデルと比較して、入力と出力の間のグローバルな依存関係を引き出すための “アテンション”…
自己対戦を通じて単純なゲームをマスターするエージェントのトレーニング
「完全情報ゲームで優れるために必要なすべてがゲームのルールにすべて見えるというのはすごいことですね残念ながら、私のような凡人には、ゲームのルールを読むことさえ…」
「質問、肩をすくめること、そして次は何か:変化の25年」
「Googleが設立されて以来、私たちは難しい質問に答えるために取り組み、人々が自分の質問に答えを得るのを助け、世界のためにテクノロジーを進化させるために取り組んできました」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.