Learn more about Search Results いくつかの - Page 10
- You may be interested
- パンダのGroupByを最大限に活用する
- 新しいAmazon SageMakerコンテナでLLMの推...
- 「犯罪者がWormGPT(ダークウェブのChatGP...
- 「予算の制約を持つ学生や起業家のための7...
- マイクロソフトAI研究チームが提案する「A...
- 「You.comがYouRetrieverをリリース:You....
- コース開始コミュニティイベント
- 「3Dプリントされた『生物性材料』が汚染...
- 「5層データスタックの構築方法」
- GEKKOを使用して、世界を確定的な方法でモ...
- 「メタは、AIチャットボットを個性付けて...
- 「9つの方法でAIがデータセンターセキュリ...
- Google Pixel Watchが落下を検知する方法
- 重み量子化の概要
- 「人間と機械の対話を革新する:プロンプ...
裁判官がChatGPTを法的判決に使用することが許可されました
イギリスは今、裁判所で「非常に便利な」人工知能チャットボットの使用を許可しています
「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」
「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」
「ゼロから始めるLoRAの実装」
「LoRA(ローラ)は、既存の言語モデルを微調整するための効率的で軽量な方法を提供する、Low-Rank AdaptationまたはLow-Rank Adaptorsの頭字語ですこれには、BERTのようなマスクされた言語モデルも含まれます...」
このAIの論文は、生成型AIモデルのサイバーセキュリティに関する意味を明らかにしています-リスク、機会、倫理的な課題
生成AI(GenAI)モデル、ChatGPT、Google Bard、そしてMicrosoftのGPTなどは、AIインタラクションを革新しました。これらはテキスト、画像、音楽などの多様なコンテンツを作成し、コミュニケーションや問題解決に影響を与えることで、さまざまな領域を再構築しています。ChatGPTの急速な普及は、GenAIが日常のデジタルライフに統合され、人々のAIとの認識とやり取りを変えていることを反映しています。人間のような会話を理解し生成する能力により、AIはより広範な観客に対してアクセス可能で直感的になり、認識を大きく変えることができました。 GenAIモデルの状態は、GPT-1からGPT-4などの最新の試行まで、急速に進化しています。それぞれの試行は、言語理解、コンテンツ生成、およびマルチモーダル機能において、大きな進歩を示してきました。しかし、この進化には課題もあります。これらのモデルの高度化は、倫理的な懸念、プライバシーのリスク、および悪意のある主体が悪用するかもしれない脆弱性とともにやってきます。 この観点から、最近の論文では、特にChatGPTについて、セキュリティとプライバシーの影響について詳しく検討されています。この論文では、ChatGPTにおいて倫理的な境界とプライバシーを侵害する脆弱性が明らかにされ、悪意のあるユーザーに悪用される可能性があることが示されています。論文では、Jailbreaksや逆心理学、およびプロンプトインジェクション攻撃などのリスクが強調され、これらのGenAIツールに関連する潜在的な脅威が示されています。また、サイバー犯罪者がソーシャルエンジニアリング攻撃、自動ハッキング、およびマルウェアの作成にGenAIを誤用する可能性についても探求されています。さらに、ポテンシャルな攻撃に対抗するために、GenAIを利用した防御技術についても論じられており、サイバーディフェンスの自動化、脅威インテリジェンス、安全なコード生成、および倫理的なガイドラインの強化を強調しています。 この研究チームは、ChatGPTを操作する方法について詳細に探求しました。DAN、SWITCH、およびCHARACTER Playなどのジェイルブレーキング手法について説明し、制約を上書きし倫理的な制約を回避することを目指しています。これらの手法が悪意のあるユーザーによって悪用された場合の潜在的なリスクが強調され、有害なコンテンツの生成やセキュリティ侵害が起こる可能性があります。さらに、ChatGPT-4の機能が制限されずに利用される場合にインターネットの制限を破る可能性がある心理プロンプトインジェクション攻撃にも踏み込んでおり、ChatGPTなどの言語モデルの脆弱性を紹介し、攻撃ペイロード、ランサムウェア/マルウェアコード、およびCPUに影響を与えるウイルスの生成の例を提供しています。これらの探求は、AIモデルの潜在的な誤用による重要なサイバーセキュリティの懸念を明確にし、ChatGPTのようなAIモデルがソーシャルエンジニアリング、フィッシング攻撃、自動ハッキング、およびポリモーフィックマルウェアの生成にどのように誤用されるかを示しています。 研究チームは、ChatGPTがサイバーディフェンスに貢献するいくつかの方法を探求しました: – 自動化:ChatGPTはSOCアナリストを支援し、インシデントの分析、レポートの生成、および防御戦略の提案を行います。 – レポート作成:サイバーセキュリティデータに基づいて理解可能なレポートを作成し、脅威の特定とリスクの評価を支援します。 – 脅威インテリジェンス:広範なデータを処理して脅威を特定し、リスクを評価し、緩和策を推奨します。 – セキュアコーディング:コードレビューにおけるセキュリティバグの検出を支援し、セキュアなコーディングのプラクティスを提案します。 – 攻撃の特定:データを分析して攻撃パターンを説明し、攻撃の理解と予防を支援します。 – 倫理的なガイドライン:AIシステムの倫理的なフレームワークの要約を生成します。 – テクノロジーの向上:侵入検知システムと統合して脅威検知を向上させます。 – インシデント対応:即時のガイダンスを提供し、インシデント対応プレイブックを作成します。 –…
地球は平らではなく、あなたのボロノイ図もそうであるべきではありません
「Pythonを使用して、ジオスペーシャルの精度を探索し、正確なジオスペーシャル分析における球面と2Dボロノイ図の違いを理解する」
ポイントクラウド用のセグメント化ガイド「Segment Anything 3D for Point Clouds Complete Guide (SAM 3D)」
「セマンティックセグメンテーションアプリケーションを3Dポイントクラウドに適用し、Segment Anything Model(SAM)とPythonで構築しますボーナス:2Dから3Dへのプロジェクションのためのコードも提供します」
Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します
ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します
このAIペーパーは、写真リアルな人物モデリングと効率的なレンダリングのブレイクスルーであるHiFi4Gを明らかにします
4D(時空)人間パフォーマンスのボリューメトリックな記録とリアルな表現は、観客とパフォーマーの間の障壁を取り払います。それはテレプレゼンスやテレエデュケーションなど、没入型のVR / AR体験を提供します。一部の早期システムは、記録された映像からテクスチャモデルを再現するために明示的に非剛体登録を使用しています。しかし、それらは依然として遮蔽とテクスチャの不足に対して感受性があり、再構築の出力にはギャップとノイズが生じます。最近のNeRFを例に挙げる最新のニューラルブレイクスルーは、写真のようなリアルなボリュームレンダリングを実現するために、明示的な再構築ではなく、座標ベースのマルチレイヤパーセプトロン(MLP)を最適化します。 特定の動的なNeRFのバリエーションでは、追加の暗黙変形フィールドを使用して、すべてのライブフレームでの特徴の再現に対してカノニカルな特徴空間を保持しようとします。ただし、このようなカノニカルデザインは、重要なトポロジーの変化や大きな動きに対して敏感です。最近の手法では、平面分解やハッシュエンコーディングによって、3D特徴グリッドを簡潔に説明し、動作時のメモリとストレージの問題を解決しました。最近、静的なシーンを表すための明示的なパラダイムへ戻る3Dガウシアンスプラッティング(3DGS)があります。これにより、3DガウシアンプリミティブのGPUフレンドリーなラスタライゼーションに基づく、過去に実現できなかったリアルタイムかつ高品質な放射場レンダリングが可能です。いくつかの進行中のプロジェクトでは、3DGSを動的な設定に適応させるために変更されています。 一部は、動的なガウシアンの非剛体運動に注力し、その過程でレンダリングの品質を失います。他のものは、元の3DGSの明示的でGPUフレンドリーなエレガンスを失い、追加の暗黙の変形フィールドを使用して動きの情報を補完することができないため、長時間の動きを処理することができません。本研究では、ShanghaiTech大学、NeuDim、ByteDance、およびDGeneの研究チームが、高密度ビデオから高品質な4D人間パフォーマンスを再現するための完全に明示的かつコンパクトなガウシアンベースのHiFi4Gメソッドを紹介しています(図1を参照)。彼らの主なコンセプトは、非剛体トラッキングと3Dガウシアン表現を組み合わせて、運動と外観データを分離し、コンパクトで圧縮フレンドリーな表現を実現することです。HiFi4Gは、現在の暗黙のレンダリング技術の最適化速度、レンダリング品質、およびストレージオーバーヘッドに関して、顕著な改善を示します。 彼らの明示的な表現の助けを借りて、彼らの結果はGPUベースのラスタ化パイプラインに容易に統合することもできます。これにより、VRヘッドセットを身に着けたままバーチャルリアリティで高品質な人間パフォーマンスを目の当たりにすることができます。研究チームはまず、細かいガウシアンと粗い変形グラフからなるデュアルグラフ技術を提供し、ガウシアン表現と非剛体トラッキングを自然に結び付けます。前者では、研究チームはNeuS2を使用してフレームごとのジオメトリプロキシを作成し、埋め込み変形(ED)をキーフレームのように使用します。このような明示的なトラッキング手法により、シーケンスがパートに分割され、各セグメント内で豊富な運動が与えられます。キーボリュームの更新と同様に、研究チームは3DGSを使用して現在のセグメント内のガウシアンの数を制限し、以前のセグメントから誤ったガウシアンを除外し、新しいガウシアンを更新します。 次に、研究チームは細かいガウシアングラフを構築し、粗いEDネットワークから各ガウシアン運動を補完します。ガウシアングラフをEDグラフで単純に曲げてスクリーン空間に当てはめると、顕著な不自然な歪みが生じます。制限なしに継続的な最適化が行われることから、ぶれのアーティファクトも生じます。ガウシアン特性の更新と非剛体運動の先行に適切なバランスを取るために、研究チームは4Dガウシアン最適化アプローチを提案しています。研究チームは、各ガウシアンの外観特性(不透明度、スケーリング係数、球面調和)の一貫性を保証するために、時間の経過による正則化を採用しています。研究チームは、近隣のガウシアン間でローカルにできるだけ剛体に近い運動を生成するために、運動特性(位置と回転)のスムーズ化項を提案しています。 非剛体移動を示す領域におけるちらつきアーティファクトを罰するため、これらの正則化に適応的な加重メカニズムが追加されています。研究チームは最適化後に空間的に時間的にコンパクトな4Dガウス関数を生成します。研究チームは、ガウスパラメータのための従来の残差補正、量子化、エントロピー符号化に従う同梱の圧縮技術を提案し、HiFi4Gを消費者にとって有用なものとしています。圧縮率は約25倍で、各フレームに必要なストレージ容量は2MB未満です。これにより、VRヘッドセットを含むさまざまなデバイスで人間のパフォーマンスを没入感ある観察することが可能です。 要点をまとめると、彼らの主な貢献は以下の通りです: ・研究チームは、人間のパフォーマンスレンダリングのためのガウススプラットと非剛体トラッキングを結ぶコンパクトな4Dガウス表現を提案しました。 ・研究チームは、異なる正則化設計を使用して空間的に時間的に一貫性のある4Dガウス関数を効率的に復元するための二重グラフアプローチを提供します。 ・研究チームは、複数のプラットフォーム上で低ストレージな没入型人間パフォーマンス体験を実現するための補完的な圧縮アプローチを提供します。
費用効率の高いGPT NeoXおよびPythiaモデルの訓練における節約と正確性:AWS Trainiumの活用
大規模言語モデル(またはLLMs)は、日々の会話のトピックとなっていますその迅速な採用は、1億人のユーザーに到達するまでに必要な時間の量で明らかですこれが「Facebookでの4.5年」からわずかな「2ヶ月でのChatGPT」の史上最低になったことが証拠です生成型事前学習トランスフォーマー(GPT)は因果自己回帰の更新を使用します[...]
「ウェアラブルデータによるコロナ感染予測」
消費者用ウェアラブルデバイスと医療用ウェアラブルデバイスの収斂は近いのか?
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.