Learn more about Search Results AMPL - Page 106
- You may be interested
- 「OpenAIの研究者たちは、敵対的なトレー...
- 「関数をキャッシュしてPythonをより速く...
- 就職を助けることができる5つの珍しいデー...
- 機械学習の専門家 – Sasha Luccioni
- 「Jupyter AIに会おう Jupyterノートブッ...
- 「MindGPTとは、fMRI信号から察知された視...
- 「未来のコンピュータから秘密を守る競争」
- 「ベストを学ぶ – 必読のテック企業...
- 『AI規制に関するEUの予備的な合意:ChatG...
- 「データからドルへ:線形回帰の利用」
- 「CMUの研究者がBUTD-DETRを導入:言語発...
- MITの研究者が、生成プロセスの改善のため...
- 「QLoRAを使ってLlama 2を微調整し、AWS I...
- メタのラマ2:商業利用のためのオープンソ...
- 「AIドクター」は、入院後の再入院やその...
「Storytelling with Data」によると、データの視覚化をすぐに改善するためのMatplotlibのヒント
「Storytelling with Data」(Cole Nussbaumer Knaflic著)で得た教訓に基づいて、Matplotlibとseabornのデータ可視化を改善する方法
RedPajamaプロジェクト:LLMの民主化を目指すオープンソースイニシアチブ
アクセス可能な大規模言語モデルを通じてコミュニティを強化するプロジェクトのリーダーシップを担っています
より速いデータ検索のためのSQLクエリの最適化方法
今日は、なぜSQLクエリの最適化が重要であり、どのようなテクニックを使用して最適化できるかについて話します
通貨為替レートの予測のためのSARIMAモデル
はじめに 通貨の為替レート予測とは、ある通貨の価値が他の通貨に対して将来的にどのように変化するかを予測することです。通貨の予測は、人々、企業、そして金融機関が賢明な金融判断を下すのに役立ちます。使用できる予測技術の1つはSARIMAです。 SARIMAは、季節的なパターンを持つ時系列データを推定するための優れた時系列予測技術です。 SARIMAは、過去と現在の時系列データの関連性をモデル化し、データ内のパターンを認識することによって機能します。 SARIMAは、傾向や季節性を捉えるためのさまざまな自己回帰(AR)モデルや移動平均(MA)モデル、および差分を利用します。 「季節性」とは、日々、週次、年次など、一定期間にわたって規則的に予測可能なデータの変動を指します。 為替レートの変化を予測することで、通貨価値の変化についてより正確な情報を得ることができます。 では、この記事の手順に従って予測を行いましょう。 学習目標 歴史データのパターンとトレンドを特定することにより、個人、企業、金融機関が市場動向を予測するのに役立ちます。 通貨の変動に関連する潜在的なリスクを特定することにより、リスクを軽減することができます。 通貨変換を最適化するために、最適な通貨変換時期を特定することができます。 将来の為替レートの方向性に関する情報を提供することにより、意思決定を改善することができます。 これらの目的に基づいて、SARIMAを使用してモデルを開発し、季節的なデータのパターンを集計して将来的な値のより正確な予測を行います。 この記事は、Data Science Blogathonの一部として公開されました。 ステップ1:ライブラリのインポート !pip install pmdarima from pmdarima.arima import…
AIのマスタリング:プロンプトエンジニアリングソリューションの力
私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、AIモデルのフルポテンシャルを引き出すことができます
Python におけるカテゴリカル変数の扱い方ガイド
データサイエンスまたは機械学習プロジェクトでのカテゴリ変数の扱いは容易な仕事ではありませんこの種の作業には、アプリケーションの分野の深い知識と幅広い理解が必要です...
プレイヤーの離脱を予測する方法、ChatGPTの助けを借りる
ゲームの世界では、企業はプレイヤーを引きつけるだけでなく、特にゲーム内のマイクロトランザクションに頼る無料のゲームでは、できるだけ長く彼らを保持することを目指していますこれらの...
Amazon SageMaker 上で MPT-7B を微調整する
毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです
非教師あり学習シリーズ:階層クラスタリングの探索
前回の「教師なし学習シリーズ」の投稿では、最も有名なクラスタリング手法の1つであるK平均法クラスタリングについて探究しました今回の投稿では、別の手法の背後にある方法について説明します...
ビジュアルキャプション:大規模言語モデルを使用して、動的なビジュアルを備えたビデオ会議を補完する
Google Augmented Realityのリサーチサイエンティスト、Ruofei DuとシニアスタッフリサーチサイエンティストのAlex Olwalが投稿しました。 ライブキャプションやノイズキャンセリングなどの機能により、ビデオ会議の最近の進歩により、リモートビデオ通信は大幅に改善されました。しかし、複雑で微妙な情報をより良く伝えるために、動的な視覚的拡張が役立つ場面があります。たとえば、日本食レストランで何を注文するか話し合う場合、友達があなたが「すき焼き」を注文することに自信を持つのに役立つビジュアルを共有することができます。また、最近の家族旅行について話しているときに、個人的なアルバムから写真を見せたい場合があります。 ACM CHI 2023 で発表された「Visual Captions: Augmenting Verbal Communication With On-the-fly Visuals」では、私たちは、口頭の手がかりを使用してリアルタイムのビジュアルを使って同期ビデオ通信を拡張するシステムを紹介します。私たちは、この目的のためにキュレーションしたデータセットを使用して、オープンボキャブラリーの会話で関連するビジュアルを積極的に提案するために、大規模な言語モデルを微調整しました。私たちは、実時間の転写とともに拡張されたコミュニケーションの急速なプロトタイピングに設計されたARChatプロジェクトの一部としてVisual Captionsをオープンソース化しました。 Visual Captionsは、リアルタイムのビジュアルで口頭コミュニケーションを容易にします。このシステムは、リアルタイムの音声からテキストへの転写でよく見られる誤りにも対応しています。たとえば、文脈から外れて、転写モデルは「pier」という単語を「pair」と誤解しましたが、Visual Captionsはそれでもサンタモニカのピアの画像を推奨します。 動的なビジュアルで口頭コミュニケーションを拡張するための設計空間 私たちは、ソフトウェアエンジニア、研究者、UXデザイナー、ビジュアルアーティスト、学生など、様々な技術的および非技術的なバックグラウンドを持つ10人の内部参加者を招待し、潜在的なリアルタイムビジュアル拡張サービスの特定のニーズと欲求を議論しました。2つのセッションで、私たちは想定されるシステムの低保守性のプロトタイプを紹介し、その後、既存のテキストから画像へのシステムのビデオデモを示しました。これらの議論により、以下のようにD1からD8とラベル付けされた8つの次元の設計空間が生まれました。 ビジュアル拡張は、会話と同期または非同期に行われる場合があります(D1:時間)、話題の表現と理解の両方に使用できる場合があります(D2:主題)、さまざまなビジュアルコンテンツ、ビジュアルタイプ、ビジュアルソースを使用して適用できる場合があります(D3:ビジュアル)。このような視覚的拡張は、ミーティングの規模(D4:スケール)や、共同設置またはリモート設定でミーティングが行われているかどうか(D5:スペース)によって異なる場合があります。これらの要因はまた、ビジュアルが個人的に表示されるべきか、参加者間で共有されるべきか、あるいはすべての人に公開されるべきかを決定するのにも影響します(D6:プライバシー)。参加者はまた、会話をしながらシステムとやり取りするさまざまな方法を特定しました(D7:起動)。たとえば、人々は「プロアクティブ」の異なるレベルを提案しました。これは、ユーザーがモデルがイニシアチブを取る程度を示します。最後に、参加者は、入力に音声やジェスチャーを使用するなど、異なる相互作用方法を想定しました(D8:相互作用)。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.