Learn more about Search Results AMPL - Page 103
- You may be interested
- Amazon SageMakerを使用して、ML推論アプ...
- 「Google Brainの共同創設者は、テック企...
- スキーラーンチュートリアル:モジュール1
- iPhone、iPad、およびMacでのCore MLによ...
- 教育のためのHugging Faceをご紹介します 🤗
- ゼロトラストから安全なアクセスへ:クラ...
- 「AudioGPTをご紹介します:ChatGPTとオー...
- 新興スタートアップにとってのAIカンファ...
- マルチマテリアルプリンターにより、柔軟...
- 「Rのapply()関数を理解するためのシンプ...
- 「仕事を守るために自動化を避ける」
- 「SOCKS5プロキシ vs HTTPプロキシ どちら...
- 最適な会議スケジューリング
- 「AIが航空会社のコントレイルによる気候...
- 「RustコードのSIMDアクセラレーションの...
事前学習済みのViTモデルを使用した画像キャプショニングにおけるVision Transformer(ViT)
はじめに 事前学習済みのViTモデルを使用した画像キャプショニングは、画像の詳細な説明を提供するために画像の下に表示されるテキストまたは書き込みのことを指します。つまり、画像をテキストの説明に翻訳するタスクであり、ビジョン(画像)と言語(テキスト)を接続することで行われます。この記事では、PyTorchバックエンドを使用して、画像のViTを主要な技術として使用して、トランスフォーマーを使用した画像キャプショニングの生成方法を、スクラッチから再トレーニングすることなくトレーニング済みモデルを使用して実現します。 出典: Springer 現在のソーシャルメディアプラットフォームや画像のオンライン利用の流行に対応するため、この技術を学ぶことは、説明、引用、視覚障害者の支援、さらには検索エンジン最適化といった多くの理由で役立ちます。これは、画像を含むプロジェクトにとって非常に便利な技術であります。 学習目標 画像キャプショニングのアイデア ViTを使用した画像キャプチャリング トレーニング済みモデルを使用した画像キャプショニングの実行 Pythonを使用したトランスフォーマーの利用 この記事で使用されたコード全体は、このGitHubリポジトリで見つけることができます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 トランスフォーマーモデルとは何ですか? ViTについて説明する前に、トランスフォーマーについて理解しましょう。Google Brainによって2017年に導入されて以来、トランスフォーマーはNLPの能力において注目を集めています。トランスフォーマーは、入力データの各部分の重要性を異なる重み付けする自己注意を採用して区別されるディープラーニングモデルです。これは、主に自然言語処理(NLP)の分野で使用されています。 トランスフォーマーは、自然言語のようなシーケンシャルな入力データを処理しますが、トランスフォーマーは一度にすべての入力を処理します。注意機構の助けを借りて、入力シーケンスの任意の位置にはコンテキストがあります。この効率性により、より並列化が可能となり、トレーニング時間が短縮され、効率が向上します。 トランスフォーマーアーキテクチャ 次に、トランスフォーマーのアーキテクチャの構成を見てみましょう。トランスフォーマーアーキテクチャは、主にエンコーダー-デコーダー構造から構成されています。トランスフォーマーアーキテクチャのエンコーダー-デコーダー構造は、「Attention Is All You Need」という有名な論文で発表されました。 エンコーダーは、各レイヤーが入力を反復的に処理することを担当し、一方で、デコーダーレイヤーはエンコーダーの出力を受け取り、デコードされた出力を生成します。単純に言えば、エンコーダーは入力シーケンスをシーケンスにマッピングし、それをデコーダーに供給します。デコーダーは、出力シーケンスを生成します。 ビジョン・トランスフォーマーとは何ですか?…
ベイジアンマーケティングミックスモデルの理解:事前仕様に深く入り込む
ベイジアン・マーケティング・ミックス・モデリングは、特にLightweightMMM(Google)やPyMC Marketing(PyMC Labs)などのオープンソースツールの最近のリリースにより、ますます注目を集めています...
vLLM:24倍速のLLM推論のためのPagedAttention
この記事では、PagedAttentionとは何か、そしてなぜデコードを大幅に高速化するのかを説明します
類似検索、パート5:局所性鋭敏ハッシュ(LSH)
類似度検索とは、クエリが与えられたときに、データベース内のすべてのドキュメントの中から、それに最も類似したドキュメントを見つけることを目的とした問題ですデータサイエンスにおいては、類似度検索はしばしば自然言語処理において現れます...
特徴量が多すぎる?主成分分析を見てみましょう
次元の呪いは、機械学習における主要な問題の1つです特徴量の数が増えると、モデルの複雑さも増しますさらに、十分なトレーニングデータがない場合、それは...
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します
データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...
線形回帰の理論的な深堀り
多くのデータサイエンス志望のブロガーが行うことがあります 線形回帰に関する入門的な記事を書くことですこれは、この分野に入る際に最初に学ぶモデルの1つであるため、自然な選択肢です...
GPTとBERT:どちらが優れているのか?
生成AIの人気の高まりに伴い、大規模言語モデルの数も増加していますこの記事では、GPTとBERTの2つのモデルを比較しますGPT(Generative...
ExcelとPower BI – 意思決定においてどちらが優れているか?
現代の急速なビジネス環境においては、組織の成功のためには情報をもとにした意思決定が不可欠です。人気のあるビジネスインテリジェンスツールとそのユニークな機能を理解することが、真のポテンシャルを引き出す上で重要です。MS ExcelとPower BIの両方は、データ分析と意思決定に関する印象的な機能を提供しています。ただし、最適な選択を決定するには、具体的な要件に応じて決定する必要があります。この記事では、MS ExcelとPower BIの強みと特定のユースケースについて掘り下げ、ビジネスニーズに合わせてどちらのツールを選択するかをお手伝いします。 MS Excelとは? Microsoft Excelは、データの整理、操作、分析、可視化が可能な強力かつ使いやすいツールです。データ処理、クリーニング、変換などの重要な機能を提供しています。データ分析と可視化には、データ分析ツール、ピボットテーブル、グラフなどの組み込み機能があります。また、Goal Seek、Solver、Decision Trees、Sensitivity analysisなどの機能により、要約されたデータに基づいて情報をもとにした意思決定が可能です。Power PivotやQueryは、データモデリングや変換を容易にすることで、意思決定に重要な役割を果たしています。Excelは、データを分析し、効果的な意思決定を行うための多目的なツールです。 Power BIとは? Power BIは、Excelと同等の性能を持ち、データ変換、意思決定、さまざまなデータソースへの接続、統合、可視化、プレゼンテーションなどの機能を提供するMicrosoftが提供する別の意思決定テーブルです。Power BIには、動的でインタラクティブなレポートやリアルタイムダッシュボードを作成する機能など、独自の特徴があります。また、データモデリング、異なるデータ間の関係の形成、データ内の依存関係の検索なども含まれます。 さらに、Power Queryを介したデータクエリは、直感的なグラフィカルインターフェースを使用して、クリーニング、整形、および変換などのデータ処理アクションを実行する興味深い機能です。Microsoftの製品として、包括的で使いやすいビジネスインテリジェンスツールとしてのコア機能とサービスを提供します。 Excelの最良の機能 1. データの整理に使用できるスプレッドシート ソートおよびフィルタリング:ソートおよびフィルタリング機能を使用して、データを簡単に整理できます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.