Learn more about Search Results OPT - Page 102

🤗変換器を使用した確率的な時系列予測

はじめに 時系列予測は重要な科学的およびビジネス上の問題であり、従来の手法に加えて、深層学習ベースのモデルの使用により、最近では多くのイノベーションが見られています。ARIMAなどの従来の手法と新しい深層学習手法の重要な違いは、次のとおりです。 確率予測 通常、従来の手法はデータセット内の各時系列に個別に適合させられます。これらはしばしば「単一」または「ローカル」な手法と呼ばれます。しかし、一部のアプリケーションでは大量の時系列を扱う際に、「グローバル」モデルをすべての利用可能な時系列に対してトレーニングすることは有益であり、これによりモデルは多くの異なるソースからの潜在表現を学習できます。 一部の従来の手法は点値(つまり、各時刻に単一の値を出力するだけ)であり、モデルは真のデータに対するL2またはL1タイプの損失を最小化することによってトレーニングされます。しかし、予測はしばしば実世界の意思決定パイプラインで使用されるため、人間が介在していても、予測の不確実性を提供することははるかに有益です。これは「確率予測」と呼ばれ、単一の予測とは対照的です。これには、確率分布をモデル化し、そこからサンプリングすることが含まれます。 つまり、ローカルな点予測モデルをトレーニングする代わりに、グローバルな確率モデルをトレーニングすることを望んでいます。深層学習はこれに非常に適しており、ニューラルネットワークは複数の関連する時系列から表現を学習することができ、データの不確実性もモデル化できます。 確率的設定では、コーシャンまたはスチューデントTなどの選択したパラメトリック分布の将来のパラメータを学習するか、条件付き分位関数を学習するか、または時系列設定に適応させたコンフォーマル予測のフレームワークを使用することが一般的です。選択した方法はモデリングの側面に影響を与えないため、通常は別のハイパーパラメータと考えることができます。確率モデルを経験的平均値や中央値による点予測モデルに変換することも常に可能です。 時系列トランスフォーマ 時系列データをモデリングする際に、その性質上、研究者はリカレントニューラルネットワーク(RNN)(LSTMやGRUなど)、畳み込みネットワーク(CNN)などを使用したモデル、および最近では時系列予測の設定に自然に適合するトランスフォーマベースの手法を開発しています。 このブログ記事では、バニラトランスフォーマ(Vaswani et al., 2017)を使用して、単変量の確率予測タスク(つまり、各時系列の1次元分布を個別に予測)を活用します。エンコーダーデコーダートランスフォーマは予測に適しているため、いくつかの帰納バイアスをうまくカプセル化しています。 まず、エンコーダーデコーダーアーキテクチャの使用は、通常、一部の記録されたデータに対して将来の予測ステップを予測したい場合に推論時に役立ちます。これは、与えられた文脈に基づいて次のトークンをサンプリングし、デコーダーに戻す(「自己回帰生成」とも呼ばれる)テキスト生成タスクに類似して考えることができます。同様に、ここでも、ある分布タイプが与えられた場合、それからサンプリングして、望ましい予測ホライズンまでの予測を提供することができます。これは、NLPの設定についてのこちらの素晴らしいブログ記事に関しても言えます。 第二に、トランスフォーマは、数千の時系列データでトレーニングする際に役立ちます。注意機構の時間とメモリの制約のため、時系列のすべての履歴を一度にモデルに入力することは実現可能ではないかもしれません。したがって、適切なコンテキストウィンドウを考慮し、このウィンドウと次の予測長サイズのウィンドウをトレーニングデータからサンプリングして、確率的勾配降下法(SGD)のためのバッチを構築する際に使用することができます。コンテキストサイズのウィンドウはエンコーダーに渡され、予測ウィンドウは因果マスク付きデコーダーに渡されます。つまり、デコーダーは次の値を学習する際には、前の時刻ステップのみを参照できます。これは、バニラトランスフォーマを機械翻訳のためにトレーニングする方法と同等であり、「教師強制」と呼ばれます。 トランスフォーマのもう一つの利点は、他のアーキテクチャに比べて、時系列の設定で一般的な欠損値をエンコーダーやデコーダーへの追加マスクとして組み込むことができ、インフィルされることなくまたは補完することなくトレーニングできることです。これは、トランスフォーマライブラリのBERTやGPT-2のようなモデルのattention_maskと同等です。注意行列の計算にパディングトークンを含めないようにします。 Transformerアーキテクチャの欠点は、バニラのTransformerの二次計算およびメモリ要件によるコンテキストと予測ウィンドウのサイズの制限です(Tay et al.、2020を参照)。さらに、Transformerは強力なアーキテクチャであるため、他の手法と比較して過学習や偽の相関をより簡単に学習する可能性があります。 🤗 Transformersライブラリには、バニラの確率的時系列Transformerモデルが付属しており、それを単純にTime Series Transformerと呼んでいます。以下のセクションでは、このようなモデルをカスタムデータセットでトレーニングする方法を示します。 環境のセットアップ…

人間のフィードバックからの強化学習(RLHF)の説明

この記事は以下の言語に翻訳されています:中国語(簡体字)とベトナム語。他の言語に翻訳に興味がありますか?nathan at huggingface.co までお問い合わせください。 言語モデルは、過去数年間に人間の入力プロンプトから多様で魅力的なテキストを生成する能力を示してきました。しかし、「良い」テキストとは何かは、主観的で文脈に依存するため、本質的に定義するのは難しいです。創造性を求める物語の執筆などの多くのアプリケーションでは、真実であるべき情報の断片、または実行可能なコードのスニペットなどが必要です。 これらの属性を捉えるための損失関数を作成することは困難であり、ほとんどの言語モデルはまだ単純な次のトークン予測の損失(例:クロスエントロピー)で訓練されています。損失自体の欠点を補うために、人々はBLEUやROUGEなど、人間の優先順位をより適切に捉えるように設計されたメトリクスを定義しています。これらのメトリクスは、パフォーマンスを測定する上で損失関数自体より適しているものの、生成されたテキストを単純なルールで参照テキストと比較するだけなので、制約もあります。生成されたテキストに対する人間のフィードバックをパフォーマンスの指標として使用するか、さらに進んでそのフィードバックを損失としてモデルを最適化することができれば、素晴らしいことではないでしょうか?それが「人間のフィードバックによる強化学習(RLHF)」のアイデアです。強化学習の手法を使用して、言語モデルを人間のフィードバックで直接最適化するのです。RLHFにより、言語モデルは一般的なテキストデータのコーパスで訓練されたモデルを複雑な人間の価値に合わせることができるようになりました。 RLHFの最近の成功例は、ChatGPTでの使用です。ChatGPTの印象的な能力を考慮して、RLHFについて説明してもらいました: それは驚くほどうまくいっていますが、すべてをカバーしているわけではありません。それらのギャップを埋めましょう! 人間のフィードバックによる強化学習(RL from human preferencesとも呼ばれます)は、複数のモデルのトレーニングプロセスと異なる展開の段階を伴うため、難しい概念です。このブログ記事では、トレーニングプロセスを次の3つの主要なステップに分解します: 言語モデル(LM)の事前トレーニング データの収集と報酬モデルのトレーニング 強化学習によるLMの微調整 まず、言語モデルの事前トレーニングについて見ていきましょう。 言語モデルの事前トレーニング RLHFの出発点として、クラシカルな事前トレーニング目標で既に事前トレーニングされた言語モデルを使用します(詳細については、このブログ記事を参照してください)。OpenAIは、最初の人気のあるRLHFモデルであるInstructGPTに対して、より小さなバージョンのGPT-3を使用しました。Anthropicは、このタスクのためにトレーニングされた1,000万から520億のパラメータを持つトランスフォーマーモデルを使用しました。DeepMindは、2800億のパラメータモデルGopherを使用しました。 この初期モデルは、追加のテキストや条件で微調整することもできますが、必ずしも必要ではありません。たとえば、OpenAIは「好ましい」とされる人間が生成したテキストを微調整し、Anthropicは彼らの「助けになり、正直で無害な」基準に基づいて元のLMを蒸留することで、RLHFのための初期LMを生成しました。これらは共に、私が高価な増強データと呼ぶものの一部ですが、RLHFを理解するために必要なテクニックではありません。 一般的に、「どのモデル」がRLHFの出発点として最適かは明確な答えがありません。このブログ記事では、RLHFのトレーニングにおけるオプションの設計空間が完全に探索されていないという共通のテーマになります。 次に、言語モデルが必要なデータを生成して、人間の優先順位がシステムに統合される「報酬モデル」をトレーニングする必要があります。 報酬モデルのトレーニング 人間の優先順位に合わせてキャリブレーションされた報酬モデル(RM、優先モデルとも呼ばれます)を生成することは、RLHFの比較的新しい研究の出発点です。その基本的な目標は、テキストのシーケンスを受け取り、数値で人間の優先順位を表すべきスカラー報酬を返すモデルまたはシステムを取得することです。システムはエンドツーエンドのLMであるか、報酬を出力するモジュラーシステム(例:モデルが出力をランク付けし、ランキングが報酬に変換される)である場合があります。出力がスカラーの報酬であることは、既存のRLアルゴリズムが後のRLHFプロセスにシームレスに統合されるために重要です。 報酬モデリングのためのこれらの言語モデルは、別の微調整された言語モデルまたは好みのデータでスクラッチからトレーニングされた言語モデルのいずれかです。例えば、Anthropicは、これらのモデルを事前トレーニング(好みモデルの事前トレーニング、PMP)の後に初期化するために専門の微調整方法を使用しています。彼らは、これが微調整よりもサンプル効率が高いと結論付けましたが、報酬モデリングのバリエーションの中で明確な最良の選択肢はありません。…

高速なトレーニングと推論 Habana Gaudi®2 vs Nvidia A100 80GB

この記事では、Habana® Gaudi®2を使用してモデルのトレーニングと推論を高速化し、🤗 Optimum Habanaを使用してより大きなモデルをトレーニングする方法について説明します。さらに、BERTの事前トレーニング、Stable Diffusion推論、およびT5-3Bファインチューニングなど、第一世代のGaudi、Gaudi2、およびNvidia A100 80GBのパフォーマンスの違いを評価するためのいくつかのベンチマークを紹介します。ネタバレ注意 – Gaudi2はトレーニングと推論の両方でNvidia A100 80GBよりも約2倍高速です! Gaudi2は、Habana Labsが設計した第2世代のAIハードウェアアクセラレータです。単一のサーバには、各々96GBのメモリを持つ8つのアクセラレータデバイスが搭載されています(第一世代のGaudiでは32GB、A100 80GBでは80GB)。Habana SDKであるSynapseAIは、第一世代のGaudiとGaudi2の両方に共通しています。つまり、🤗 Optimus Habanaは、🤗 Transformersと🤗 DiffusersライブラリとSynapseAIの間の非常に使いやすいインターフェースを提供し、第一世代のGaudiと同じようにGaudi2でも動作します!ですので、既に第一世代のGaudi用の使用準備が整ったトレーニングや推論のワークフローがある場合は、何も変更することなくGaudi2で試してみることをお勧めします。 Gaudi2へのアクセス方法 IntelとHabanaがGaudi2を利用可能にするための簡単で費用効果の高い方法の1つは、Intel Developer Cloudで利用できるようになっています。そこでGaudi2を使用するためには、以下の手順に従う必要があります: Intel…

機械学習におけるバイアスについて話しましょう!倫理と社会に関するニュースレター #2

機械学習におけるバイアスは普遍的であり、また複雑です。実際には、単一の技術的介入では問題を意味のある形で解決することはできないほど複雑です。機械学習モデルは社会技術システムであり、その展開コンテキストに依存し、常に進化しながら、不平等や有害なバイアスを悪化させる社会的な傾向を増幅させます。 これは、慎重に機械学習システムを開発するためには警戒心が必要であり、展開コンテキストからのフィードバックに対応することが求められます。これには、コンテキスト間での教訓の共有や、機械学習開発のあらゆるレベルでバイアスの兆候を分析するためのツールの開発などが必要です。 このブログポストでは、Ethics and Societyのメンバーが学んだ教訓と、機械学習におけるバイアスに対処するために開発したツールを共有しています。最初の部分では、バイアスとそのコンテキストについて幅広く考察しています。既に読んでいて、具体的にツールについて戻ってきた場合は、データセットやモデルのセクションに移動してください! 機械学習におけるバイアスに対処するために🤗のチームメンバーが開発したツールの一部を選択 目次: 機械バイアスについて 機械バイアス:機械学習システムからリスクへ バイアスをコンテキストに置く ツールと推奨事項 機械学習開発全体でのバイアスの対処 タスクの定義 データセットのキュレーション モデルのトレーニング 🤗のバイアスツールの概要 機械バイアス:機械学習システムから個人および社会的なリスクへ 機械学習システムは、さまざまなセクターやユースケースで展開されるため、以前に見たことのないスケールで複雑なタスクを自動化することができます。技術が最も効果的に機能する場合、人々と技術システムの間の相互作用をスムーズにし、高度に繰り返しの多い作業の必要性をなくしたり、研究をサポートするための情報処理の新しい方法を開放することができます。 しかし、同じシステムは、特にデータが人間の行動をエンコードする場合、差別的で虐待的な行動を再現する可能性があります。その結果、これらの問題は大幅に悪化する可能性があります。自動化とスケール展開は、次のようなことができます: 時間の経過とともに行動を固定化し、社会的な進歩が技術に反映されるのを妨げる オリジナルのトレーニングデータのコンテキストを超えて有害な行動を広める 予測を行う際にステレオタイプな関連性に過度に焦点を当てて不公平を増幅させる バイアスを「ブラックボックス」システム内に隠すことで救済の可能性を排除する これらのリスクをよりよく理解し対処するために、機械学習の研究者や開発者は、機械バイアスやアルゴリズムのバイアスなど、システムが展開コンテキストでさまざまな人口集団に対して負のステレオタイプや関連性をエンコードする可能性のあるメカニズムを研究し始めています。…

マスク2フォーマーとワンフォーマーによるユニバーサル画像セグメンテーション

このガイドでは、画像セグメンテーションのための最先端のニューラルネットワークであるMask2FormerとOneFormerを紹介します。これらのモデルは、最先端モデルの簡単な実装を提供するオープンソースのライブラリである🤗 transformersで利用できます。途中で、さまざまな形式の画像セグメンテーションの違いについて学びます。 画像セグメンテーション 画像セグメンテーションは、人や車などの画像内の異なる「セグメント」を識別するタスクです。より具体的には、画像セグメンテーションは異なる意味を持つピクセルをグループ化するタスクです。詳細については、Hugging Faceのタスクページを参照してください。 画像セグメンテーションは、主に3つのサブタスクに分割できます。それぞれのサブタスクを実行するための多数の方法とモデルアーキテクチャがあります。 インスタンスセグメンテーションは、画像内の個々の人物などの異なる「インスタンス」を識別するタスクです。インスタンスセグメンテーションは、オブジェクト検出と非常に似ていますが、境界ボックスではなく、対応するクラスラベルとともに一連のバイナリセグメンテーションマスクを出力したいという点が異なります。インスタンスはしばしば「オブジェクト」や「事物」とも呼ばれます。ただし、個々のインスタンスは重なる場合があります。 意味セグメンテーションは、画像の各ピクセルの「人」や「空」などの異なる「意味カテゴリ」を識別するタスクです。インスタンスセグメンテーションとは異なり、与えられた意味カテゴリの個々のインスタンスの区別はありません。たとえば、「人」のカテゴリのマスクを作成するだけであり、個々の人物のマスクを作成するわけではありません。対象カテゴリに個別のインスタンスがない「空」や「草」などの意味カテゴリは、しばしば「物」と呼ばれます(素晴らしい名前ですね)。ピクセルごとのカテゴリには重なりがないことに注意してください。 パノプティックセグメンテーションは、Kirillov et al.によって2018年に導入され、モデルが対応するバイナリマスクとクラスラベルのセットを単に識別することで、インスタンスセグメンテーションと意味セグメンテーションを統一することを目指しています。セグメントは「物」または「物」のどちらでもなります。インスタンスセグメンテーションとは異なり、異なるセグメント間の重なりはありません。 以下の図は、3つのサブタスクの違いを示しています(このブログ投稿から取得)。 ここ数年、研究者たちは通常、インスタンスセグメンテーション、意味セグメンテーション、パノプティックセグメンテーションのいずれかに特化したいくつかのアーキテクチャを提案してきました。インスタンスセグメンテーションとパノプティックセグメンテーションは、通常、オブジェクトインスタンスごとにバイナリマスクと対応するラベルのセットを出力することによって解決されました(インスタンス検出と非常に似ていますが、インスタンスごとに境界ボックスの代わりにバイナリマスクを出力します)。これは通常「バイナリマスク分類」と呼ばれます。一方、意味セグメンテーションは、モデルがピクセルごとに1つの「セグメンテーションマップ」を出力することで解決されることが一般的でした。したがって、意味セグメンテーションは「ピクセルごとの分類」の問題として扱われました。このパラダイムを採用する人気のある意味セグメンテーションモデルには、SegFormer(詳細なブログ投稿を書いた)とUPerNetなどがあります。 ユニバーサル画像セグメンテーション 幸いなことに、2020年ごろから、インスタンスセグメンテーション、意味セグメンテーション、およびパノプティックセグメンテーションのすべてのタスクを統一されたアーキテクチャで解決できるモデルが登場し始めました。これは最初にDETRが行ったものであり、”物”クラスと”物”クラスを統一的な方法で扱うことによってパノプティックセグメンテーションを解決した最初のモデルでした。キーイノベーションは、トランスフォーマーデコーダが並列的に一連のバイナリマスクとクラスを生成することでした。これはMaskFormerの論文で改善され、”バイナリマスク分類”のパラダイムが意味セグメンテーションにも非常にうまく適用されることが示されました。 Mask2Formerは、ニューラルネットワークアーキテクチャをさらに改善することで、インスタンスセグメンテーションにも拡張します。したがって、個別のアーキテクチャから、研究者たちが現在「ユニバーサル画像セグメンテーション」と呼んでいる、すべての画像セグメンテーションタスクを解決できるアーキテクチャに進化しました。興味深いことに、これらのユニバーサルモデルはすべて「マスク分類」のパラダイムを採用しており、完全に「ピクセルごとの分類」のパラダイムを廃止しています。Mask2Formerのアーキテクチャを示す図は、以下に示されています(オリジナルの論文から取得)。 要するに、画像はまずバックボーン(この論文ではResNetまたはSwin Transformerのどちらか)に送信されて、低解像度の特徴マップのリストを取得します。次に、これらの特徴マップは、ピクセルデコーダモジュールを使用して高解像度の特徴に改善されます。最後に、トランスフォーマーデコーダは一連のクエリを受け取り、ピクセルデコーダの特徴に基づいて一連のバイナリマスクとクラスの予測を行います。 Mask2Formerは、最先端の結果を得るために、各タスクごとにトレーニングする必要があることに注意してください。これは、OneFormerモデルによって改善されました。OneFormerモデルは、データセットのパノプティックバージョンのみをトレーニングすることで、すべての3つのタスクで最先端のパフォーマンスを実現します。さらに、テキストエンコーダを追加してモデルを「インスタンス」、「セマンティック」、または「パノプティック」の入力に条件付けることで、これをさらに改善しました。このモデルは、今日でも🤗 transformersで利用できます。Mask2Formerよりも精度が高くなっていますが、追加のテキストエンコーダにより遅延が大きくなります。OneFormerの概要については、以下の図を参照してください。Swin Transformerまたは新しいDiNATモデルをバックボーンとして使用しています。 TransformersでのMask2FormerとOneFormerの推論 Mask2FormerとOneFormerの使用法は非常に簡単であり、前身であるMaskFormerと非常に似ています。COCOパノプティックデータセットでトレーニングされたハブからMask2Formerモデルをインスタンス化し、それに対応するプロセッサもインスタンス化します。作者たちはさまざまなデータセットでトレーニングされた30個以上のチェックポイントをリリースしていることに注意してください。 from…

どのような要素が対話エージェントを有用にするのか?

ChatGPTの技術:RLHF、IFT、CoT、レッドチーミング、およびその他 この記事は、中国語の簡体字で翻訳されています。 数週間前、ChatGPTが登場し、一連の不明瞭な頭字語(RLHF、SFT、IFT、CoTなど)が公衆の議論を巻き起こしました。これらの不明瞭な頭字語は何であり、なぜそれらが重要なのでしょうか?私たちはこれらのトピックに関する重要な論文を調査し、これらの作品を分類し、達成された成果からの要点をまとめ、まだ示されていないことを共有します。 まず、言語モデルに基づく会話エージェントの現状を見てみましょう。ChatGPTは最初ではありません。実際、OpenAIよりも前に、MetaのBlenderBot、GoogleのLaMDA、DeepMindのSparrow、およびAnthropicのAssistant(このエージェントの完璧な帰属なしでの継続的な開発はClaudeとも呼ばれています)など、多くの組織が言語モデルの対話エージェントを公開しています。一部のグループは、オープンソースのチャットボットを構築する計画を発表し、ロードマップを公開しています(LAIONのOpen Assistant)。他のグループも確実に同様の作業を進めており、まだ発表していないでしょう。 以下の表は、これらのAIチャットボットを公開アクセス、トレーニングデータ、モデルアーキテクチャ、および評価方向の詳細に基づいて比較しています。ChatGPTには文書化された情報がないため、代わりにChatGPTの基礎となったと信じられているOpenAIの指示fine-tunedモデルであるInstructGPTの詳細を共有します。 トレーニングデータ、モデル、およびファインチューニングには多くの違いがあることが観察されますが、共通点もあります。これらのチャットボットの共通の目標は、ユーザーの指示に従うことです。たとえば、ChatGPTに詩を書くように指示することなどです。 予測テキストから指示の従属へ 通常、ベースモデルの言語モデリング目標だけでは、モデルがユーザーの指示に対して有益な方法で従うことを学ぶには十分ではありません。モデル開発者は、指示の細かいチューニング(IFT)を使用して、ベースモデルを、感情、テキスト分類、要約などの古典的なNLPタスクのデモンストレーションによって微調整し、非常に多様なタスクセットにおける指示の書かれた方針を学びます。これらの指示のデモンストレーションは、指示、入力、および出力の3つの主要なコンポーネントで構成されています。入力はオプションです。一部のタスクでは、ChatGPTの例のように指示のみが必要です。入力と出力が存在する場合、インスタンスが形成されます。特定の指示に対して複数の入力と出力が存在する場合もあります。以下に[Wang et al.、’22]からの例を示します。 IFTのデータは通常、人間によって書かれた指示と言語モデルを用いた指示のインスタンスのコレクションからなります。ブートストラップのために、LMは(上記の図のように)いくつかの例を使用してフューショット設定でプロンプトされ、新しい指示、入力、および出力を生成するように指示されます。各ラウンドで、モデルは人間によって選択されたサンプルとモデルによって生成されたサンプルの両方からプロンプトを受け取ります。データセットの作成における人間とモデルの貢献の割合はスペクトラムです。以下の図を参照してください。 一方は完全にモデル生成されたIFTデータセットであり、例えばUnnatural Instructions(Honovich et al.、’22)です。もう一方は手作りの指示の大規模な共同作業であり、Super-natural instructions(Wang et al.、’22)などです。これらの間には、Self-instruct(Wang et al.、’22)のような、高品質のシードデータセットを使用してブートストラップする方法もあります。IFTのデータセットを収集するもう1つの方法は、さまざまなタスク(プロンプトを含む)の既存の高品質なクラウドソーシングNLPデータセットを統一スキーマや多様なテンプレートを使用して指示としてキャストすることです。この研究の一環には、T0(Sanh et al.、’22)、自然言語指示データセット(Mishra et…

ハギングフェイスにおけるコンピュータビジョンの状況 🤗

弊社の自慢は、コミュニティとともに人工知能の分野を民主化することです。その使命の一環として、私たちは過去1年間でコンピュータビジョンに注力し始めました。🤗 Transformersにビジョントランスフォーマー(ViT)を含めるというPRから始まったこの取り組みは、現在では8つの主要なビジョンタスク、3000以上のモデル、およびHugging Face Hub上の100以上のデータセットに成長しました。 ViTがHubに参加して以来、多くのエキサイティングな出来事がありました。このブログ記事では、コンピュータビジョンの持続的な進歩をサポートするために何が起こったのか、そして今後何がやってくるのかをまとめます。 以下は、カバーする内容のリストです: サポートされているビジョンタスクとパイプライン 独自のビジョンモデルのトレーニング timmとの統合 Diffusers サードパーティーライブラリのサポート デプロイメント その他多数! コミュニティの支援:一つずつのタスクを可能にする 👁 Hugging Face Hubは、次の単語予測、マスクの埋め込み、トークン分類、シーケンス分類など、さまざまなタスクのために10万以上のパブリックモデルを収容しています。現在、我々は8つの主要なビジョンタスクをサポートし、多くのモデルチェックポイントを提供しています: 画像分類 画像セグメンテーション (ゼロショット)オブジェクト検出 ビデオ分類 奥行き推定 画像から画像への合成…

Intel Sapphire Rapidsを使用してPyTorch Transformersを高速化する – パート2

最近の投稿では、第4世代のIntel Xeon CPU(コードネーム:Sapphire Rapids)とその新しいAdvanced Matrix Extensions(AMX)命令セットについて紹介しました。Amazon EC2上で動作するSapphire Rapidsサーバーのクラスタと、Intel Extension for PyTorchなどのIntelライブラリを組み合わせることで、スケールでの効率的な分散トレーニングを実現し、前世代のXeon(Ice Lake)に比べて8倍の高速化とほぼ線形スケーリングを達成する方法を紹介しました。 この投稿では、推論に焦点を当てます。PyTorchで実装された人気のあるHuggingFaceトランスフォーマーと共に、Ice Lakeサーバーでの短いおよび長いNLPトークンシーケンスのパフォーマンスを測定します。そして、Sapphire RapidsサーバーとHugging Face Optimum Intelの最新バージョンを使用して同じことを行います。Hugging Face Optimum Intelは、Intelプラットフォームのハードウェアアクセラレーションに特化したオープンソースのライブラリです。 さあ、始めましょう! CPUベースの推論を検討すべき理由 CPUまたはGPUで深層学習の推論を実行するかどうかを決定する際には、いくつかの要素を考慮する必要があります。最も重要な要素は、モデルのサイズです。一般に、より大きなモデルはGPUによって提供される追加の計算能力からより多くの利益を得ることができますが、より小さいモデルはCPU上で効率的に実行することができます。…

パラメータ効率の高いファインチューニングを使用する 🤗 PEFT

動機 トランスフォーマーアーキテクチャに基づく大規模言語モデル(LLM)であるGPT、T5、BERTなどは、さまざまな自然言語処理(NLP)タスクで最先端の結果を達成しています。これらのモデルは、コンピュータビジョン(CV)(VIT、Stable Diffusion、LayoutLM)やオーディオ(Whisper、XLS-R)などの他の領域にも進出しています。従来のパラダイムは、一般的なWebスケールのデータでの大規模な事前学習に続いて、ダウンストリームのタスクに対する微調整です。ダウンストリームのデータセットでこれらの事前学習済みLLMを微調整することで、事前学習済みLLMをそのまま使用する場合(ゼロショット推論など)と比較して、大幅な性能向上が得られます。 しかし、モデルが大きくなるにつれて、完全な微調整は一般的なハードウェアで訓練することが不可能になります。また、各ダウンストリームタスクごとに微調整済みモデルを独立して保存および展開することは非常に高コストです。なぜなら、微調整済みモデルのサイズは元の事前学習済みモデルと同じサイズだからです。パラメータ効率の良い微調整(PEFT)アプローチは、これらの問題に対処するために開発されました! PEFTアプローチは、事前学習済みLLMのほとんどのパラメータを凍結しながら、わずかな(追加の)モデルパラメータのみを微調整するため、計算およびストレージコストを大幅に削減します。これにより、LLMの完全な微調整中に観察される「壊滅的な忘却」という問題も克服されます。PEFTアプローチは、低データレジメでの微調整よりも優れた性能を示し、ドメイン外のシナリオにもより適応します。これは、画像分類や安定拡散ドリームブースなどのさまざまなモダリティに適用することができます。 また、PEFTアプローチは移植性にも役立ちます。ユーザーはPEFTメソッドを使用してモデルを微調整し、完全な微調整の大きなチェックポイントと比較して数MBの小さなチェックポイントを取得することができます。たとえば、「bigscience/mt0-xxl」は40GBのストレージを使用し、完全な微調整では各ダウンストリームデータセットに40GBのチェックポイントが生成されますが、PEFTメソッドを使用すると、各ダウンストリームデータセットにはわずか数MBのチェックポイントでありながら、完全な微調整と同等の性能が得られます。PEFTアプローチからの小さなトレーニング済み重みは、事前学習済みLLMの上に追加されます。そのため、モデル全体を置き換えることなく、小さな重みを追加することで同じLLMを複数のタスクに使用することができます。 つまり、PEFTアプローチは、わずかなトレーニング可能なパラメータの数だけで完全な微調整と同等のパフォーマンスを実現できるようにします。 本日は、🤗 PEFTライブラリをご紹介いたします。このライブラリは、最新のパラメータ効率の良い微調整技術を🤗 Transformersと🤗 Accelerateにシームレスに統合しています。これにより、Transformersの最も人気のあるモデルを使用し、Accelerateのシンプルさとスケーラビリティを活用することができます。以下は現在サポートされているPEFTメソッドですが、今後も追加される予定です: LoRA:LORA:大規模言語モデルの低ランク適応 Prefix Tuning:P-Tuning v2:プロンプトチューニングは、スケールとタスクにわたって完全な微調整と同等の性能を発揮することができます Prompt Tuning:パラメータ効率の良いプロンプトチューニングの力 P-Tuning:GPTも理解しています ユースケース ここでは多くの興味深いユースケースを探求しています。以下はいくつかの興味深い例です: Google Colabで、Nvidia GeForce RTX…

ゼロショット画像からテキスト生成 BLIP-2

このガイドでは、Salesforce ResearchのBLIP-2を紹介します。これは最先端のビジュアル言語モデルのスイートで、現在は🤗 Transformersで利用可能です。画像キャプショニング、プロンプト付き画像キャプショニング、ビジュアルな質問応答、チャットベースのプロンプトに使用する方法を紹介します。 目次 はじめに BLIP-2の内部構造は? Hugging Face TransformersでのBLIP-2の使用 画像キャプショニング プロンプト付き画像キャプショニング ビジュアルな質問応答 チャットベースのプロンプト 結論 謝辞 はじめに 近年、コンピュータビジョンと自然言語処理の分野で急速な進歩がありました。しかし、多くの現実世界の問題は本質的にマルチモーダルです。つまり、画像やテキストなど、複数の異なる形式のデータを含みます。ビジュアル言語モデルは、異なるモダリティを組み合わせることで、さまざまなアプリケーションの可能性を広げるという課題に直面しています。ビジュアル言語モデルが取り組むことができる画像からテキストへのタスクには、画像キャプショニング、画像テキスト検索、ビジュアルな質問応答などがあります。画像キャプショニングは視覚障害者の支援、有用な商品説明の作成、テキスト以外の不適切なコンテンツの特定などに役立ちます。画像テキスト検索はマルチモーダルな検索や自動運転などのアプリケーションに適用することができます。ビジュアルな質問応答は教育に役立ち、マルチモーダルなチャットボットを可能にし、さまざまなドメイン固有の情報検索アプリケーションを支援します。 現代のコンピュータビジョンと自然言語モデルは、より優れた性能を持つ一方で、以前のモデルと比べて大幅にサイズが増えています。単一のモダリティモデルの事前学習はリソースを消費し、高コストですが、ビジョンと言語のエンドツーエンドの事前学習のコストはますます高くなっています。BLIP-2は、事前学習済みのビジョンエンコーダとLLMの組み合わせを活用し、アーキテクチャ全体をエンドツーエンドで事前学習する必要なく、新しいビジュアル言語の事前学習パラダイムを導入することで、この課題に取り組んでいます。これにより、複数のビジュアル言語タスクで最先端の結果を実現しながら、訓練可能なパラメータの数と事前学習コストを大幅に削減することができます。さらに、この手法はマルチモーダルなChatGPTのモデルへの道を切り拓きます。 BLIP-2の内部構造は? BLIP-2は、既製の凍結された事前学習済み画像エンコーダと凍結された大規模言語モデルの間に、軽量なクエリングトランスフォーマ(Q-Former)を追加することで、ビジョンと言語モデルのモダリティのギャップを埋めます。Q-FormerはBLIP-2の唯一の訓練可能な部分であり、画像エンコーダと言語モデルは凍結されたままです。 Q-Formerは、2つのサブモジュールからなるトランスフォーマモデルであり、同じセルフアテンションレイヤを共有しています: 画像トランスフォーマは、入力画像の解像度に関係なく、固定数の出力特徴を画像エンコーダから抽出し、学習可能なクエリ埋め込みを入力として受け取ります。クエリは同じセルフアテンションレイヤを介してテキストとも相互作用できます。 テキストトランスフォーマは、テキストエンコーダおよびテキストデコーダとして機能することができます。 画像トランスフォーマは、入力画像の解像度に関係なく、固定数の出力特徴を画像エンコーダから抽出し、学習可能なクエリ埋め込みを入力として受け取ります。クエリは同じセルフアテンションレイヤを介してテキストとも相互作用できます。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us