なぜ特徴スケーリングは機械学習において重要なのか?6つの特徴スケーリング技術についての議論

特徴スケーリングの重要性と6つの技術についての議論

標準化、正規化、ロバストスケーリング、平均正規化、最大絶対スケーリング、およびベクトルの単位長さのスケーリング

Photo by Mediamodifier on Unsplash

多くの機械学習アルゴリズムは、同じスケールで特徴を持つ必要があります。

さまざまなシナリオで選択できるさまざまな特徴スケーリング方法があります。これらには異なる(技術的な)名前があります。用語「特徴スケーリング」は、単にこれらの方法のいずれかを指します。

トピック------1. 異なるシナリオでの特徴スケーリング   a. PCA(主成分分析)における特徴スケーリング   b. k-meansにおける特徴スケーリング   c. KNNおよびSVMにおける特徴スケーリング   d. 線形モデルにおける特徴スケーリング   e. ニューラルネットワークにおける特徴スケーリング   f. 収束における特徴スケーリング   g. ツリーベースのアルゴリズムにおける特徴スケーリング   h. LDAにおける特徴スケーリング2. 特徴スケーリングの方法   a. 標準化   b. 最小-最大スケーリング(正規化)   c. ロバストスケーリング   d. 平均正規化   e. 最大絶対スケーリング   f. ベクトルの単位長さのスケーリング3. 特徴スケーリングとデータの分布4. 特徴スケーリング時のデータ漏洩5. 特徴スケーリング方法のまとめ

異なるシナリオでの特徴スケーリング

  • PCAにおける特徴スケーリング: 主成分分析では、PCAの成分は元の特徴の相対的な範囲に非常に敏感です。もし特徴が同じスケールで測定されていない場合、PCAはデータの分散を最大化する成分を選択しようとします。もしいくつかの特徴の範囲がより大きい場合、それらの特徴がPCAプロセスを支配する可能性があります。この場合、真の分散は成分によって捉えられないかもしれません。これを避けるためには、通常PCAの前に特徴スケーリングを行います。ただし、2つの例外があります。もし特徴間のスケールに有意差がない場合、例えば1つの特徴が0から1の範囲にあり、もう1つの特徴が0から1.2の範囲にある場合、特徴スケーリングは必要ありませんが、行っても問題ありません!相関行列を分解してPCAを実行する場合、特徴が同じスケールで測定されていなくても特徴スケーリングは必要ありません…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIニュース

ユーザーエクスペリエンスの向上:インタラクティブなチャットボットにOpenAIアシスタントAPIを実装する

イントロダクション OpenAIによるChatGPTとGPT 3モデルの導入により、世界はAIを統合したアプリケーションの使用にシフトしま...

データサイエンス

なぜハイプが重要なのか:AIについて現実的な考え方が必要

ELIZAはChatGPTにいくつかの類似点を持つ初期のチャットボットでしたなぜこの興奮が重要なのでしょうか?船を発明すると、船...

データサイエンス

「埋め込みモデルでコーパス内の意味関係を探索する」

最近、私はいくつかの仲間の学生や学者と話をしてきましたが、彼らは自由形式のテキストの分析に関心を持っていました残念な...

AI研究

Google DeepMindの研究者がSynJaxを紹介:JAX構造化確率分布のためのディープラーニングライブラリ

データは、その構成要素がどのように組み合わさって全体を形成するかを説明するさまざまな領域で構造を持っていると見なすこ...

AI研究

ジェン AI for the Genome LLM は COVID バリアントの特徴を予測します

広く高く評価されている大規模な言語モデルであるGenSLMsは、COVID-19の原因であるSARS-CoV-2の現実世界の変異体に酷似した遺...

データサイエンス

「良い説明がすべてです」

私は大規模な言語モデル(LLM)をしばらく使っていますが、個人のプロジェクトや日常の仕事の一環として使用しています多くの...